
UL~L N. IC LR

AD 410534

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAl. INFORMATION

CAMERON STATION, ALE'ANDRIA. VIRGINIA

Ui'NCLASSIFIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

I ASD-TDR-63-280

MODULAR ARITHMETIC COMPUTING TECHNIQUES

LAJ

Technical Documentary Report No. ASD-TDR-63-280

MAY 1963

S C)

Electronics Technology Division

Aeronautical Systems Division

United States Air Force

Wright-Patterson Air Force Base, Ohio

410534
Project No. 7062, Task No. 706205

(Prepared under Contract No. AF33 (657)-7899 by the
Westinghouse Electric Corporation, Air Arm Division,

Baltimore, Maryland.)

NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the Government may have
formulated, furnished, or in any way suppliedthe said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed
Services Technical Information Agency, (ASTIA), Arlington Hall Station,
Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U.S.
Department of Commerce, Washington 25, D.C., in stock quantities for sale
to the general public.

Copies of this report should not be returned to the Aeronautical Systems
Division unless return is required by security considerations, contractual
obligations, or notice on a specific document.

B
364888N, ZOO, 7"22;-63

FOREWORD

This report was prepared by Westinghouse Electric Cor-
poration, Baltimore, Maryland, on Air Force Contract

AF33(657)7899, Project 7062, Task 706205. The work was
administe red under the direction of the Electronic Technology
Laboratory, Aeronautical Systems Division, Wright-
Patterson Air Force Base, Ohio, Mr. D. J. Boaz, Project
Engineer.

The contractor's report number is 1274A.

This is the final report on the contract.

ASD-TDR-63-280

ABSTRACT

Modular arithmetic concepts and associated computation
techniques and organization are outlined. Fundamental oper-
ations of modular arithmetic discussed include sign or rel-
ative magnitude determination and division, mathematical
solution using modular arithmetic, techniques for efficient
mechanization of modular arithmetic adders and multipliers,
and organization and control of a modular arithmetic com-
puter.

Numerical analysis studies yielded novel results including
the introduction of signed residues, overflow detection tech-
niques, and a division algorithm 3 times as fast as any pre-
viously disclosed. A square-root algorithm which is con-
siderably faster than the Newton-Raphson algorithm is dis-
cussed.

Implementation techniques are described for trading speed
for complexity, programming a comp ter to extend its
range, and design techniques for reducing component counts
in adders and multipliers.

A functional simulation of modular arithmetic computation
ina conventional computer is described, and statistical data
on the operation of the various algorithms is included.

\
REVIEW AND APPROVAL STATEMENT

This report represents the specific findings of an Air Force

sponsoredprogram. It does not direct any specific application
thereof. The report is approved for publication to achieve
an exchange and stimulation of ideas.

FO7 COMAER

LEONARD M. BUTSCH, JR.
Lt Colonel, USAF
Chief, Bionics Branch
Electronic Technology Division

ASD-TD-63-280

TABLE OF CONTENTS

1. INTRODUCTION AND SUMMARY

Paragraph Page

Introduction and Summary..I

2. CONCLUSIONS

Conclusions...2Z-1

3. RECOMMENDATIONS

Recommendations.. 3-1

4. NUMERICAL ANALYSIS

4. 1 Fundamental Operations..4-1

4.1.1 Sign and Magnitude Determination (Two-Sided Mixed Radix
Notation).. 4-1

4.1.2 Overflow Detection...4-3

4. 1. 3 Division by a Modulus or a Product of Moduli-Scaling and Round-
Off..4-8

4.1.4 Conversion to Fixed Radix Notation...............................4-1Z

4.1.5 Division.............................. 4-13

4.1.6 Square Roots.. 4-22

4.1.7 Floating-Point Operations....................................4-25

4.2 Problem Applications...4-31

4.2Z. 1 The Laplace Equation................................... 4-31

4. 2. 2 Linear Differential Equations..................................4-32

4.2.3 Complex Arithmetic...4-35

4. 2.4 Polynomial Evaluation....................................... 4-36

4. 2.5 Linear Algebra.. 4-37

4. 3 Summary and Recommendations for Future Work................... 4-47

4. 3. 1 Scaling by Continued Fraction.................................4-48

4. 3. 2 Cyclic Orientation..4-49

4. 3.3 Table Look-up Procedures Using Mixed Rerrix Notation..............4-51

ASD-TDR-63-280 iv

5. SIMULATION OF MODULAR ARITHMETIC COMPUTERS
ON THE IBM 7090

Paragraph Page

5.1 G eneral 5-1

5. 2 Description . .. 5-1

5.3 Method ... 5-2

5.4 Results ... 5-3

6. SYSTEMS AND LOGIC DESIGN

6. 1 Introduction 6-1

6. 2 Modular Computer Systems Organization 6- 1

6. 2. 1 Input Unit ... 6-2

6. 2.2 M em ory Unit 6-2

6.2.3 Control Unit 6-2

6.2.4 Arithm etic Unit 6-3

6.2. 5 Output Unit 6-3

6. 3 Arithmetic and Control Units 6-4

6.3. 1 Arithmetic Unit .. 6-4

6.3. 2 Control Unit ... 6-10

6.4 Other System s Studies 6-18

6. 4. 1 Special Memory Considerations 6-18

6.4. 2 Criteria for Choice of Moduli 6-19

6. 5 Summary and Recommendations 6-20

6. 5. 1 Systems and Logic Design Summary 6-20

6. 5. 2 Recommendations for Further Study 6-21

7. IMPLEMENTATION STUDIES

7. 1 Modular Adder and Multiplier Mechanizations 7-1

7.1.1 Direct Implementation .. 7-2

7. 1. 2 Modulus Substitution .. 7-3

7. 1.3 Sign-Magnitude Mechanization 7-8

7.1.4 Range Extension Technique 7-10

7. 1.5 Programmed Arithmetic 7-12

7.2 Molecular Logic Elements 7-13

7. 3 Summary and Recommendations 7- 14

,S..-Tf ,R- 6-_"

8. REFERENCES

References.. 81

APPENDIX. PROOF OF CONVERGENCE OF SQUARE-ROOT

PROCEDURE

Proof of Convergence of Square-Root Procedure.......................A-i

LIST OF ILLUSTRATIONS

Figure Page

5-1 The A Matrix.. 5-5

5-2 The Inverse Matrix.. 5-5

5-3 Product of A and A Inverse......................................5-6

5-4 Results of Improved Method of Computing the Adjoint of Quasi-
Singular Matrices..5-6

5-5 Results of Improved Method of Computing the Adjoint of Quasi-
Singular Matrices (Inverse Known Explicitly........................5-7

5-6 Sample Output.. 5-8

6-1 Modular Computer Organization..................................6-12

6-2 Arithmetic Control..6-13

6-3 Representative Gating for TSMR Conversion.......................6-14

6-4 Comparison Command Logic.................................... 6-16

6-5 Comparator.. 6-17

6-6 Sign Determination.. 6-18

7-1 LNVR and LAVR Addition Tables Modulo 5 and 8 - Add X + Y . .. 7-4

7-2 Mod 8 for Mod 5 Addition....................................... 7-6

7-3 LAVR Multiplication Table Mod 5-Multiply X -Y 7-9

7-4 Sign-Magnitude Multiplier Mod 5 7-9

7-5 Mod 3, 4 and 5, 7, 11 Adder -Multiplier........................... 7-11

LIST OF TABLES

Table Page

6-1 Modular Arithmetic Computer Characteristics.....................6-21

6-2 Computer Comparison... 6-22

7-1 Direct Implementation and Modulus Substitution LAVR Addition 7-7

ASD-TLI..63-280 vi

GLOSSARY

ASM Add, subtract, or multiply control signal

FAP Fortran assembly program

GF Galois field

LAVR Least absolute value residue

LNVR Least nonnegative value residue

MA Modular arithmetic

TSMR "Two-sided" mixed radix

AS1-T: (-6A-2 C vii

1. INTRODUCTION AND SUMMARY

This report contains the results of an approximately 1-year study of modular

arithmetic concepts and associated computation techniques and organization. Areas

of investigation included the "difficult" fundamental operations of modular arithmetic;

namely, sign or relative magnitude determination and division, the solution of vari-

ous mathematical problems using modular arithmetic, techniques for efficient

mechanization of modular arithmetic adders and multipliers, and the organization

and control of a modular arithmetic computer.

Novel results of the numerical analysis studies include the introduction of signed

residues and the collateral "two-sided" mixed radix representation, overflow detec-

tion techniques, and a division algorithm more flexible than, and almost 3 times as

fast as, any previously disclosed. Studies of mathematical problems yielded a

square-root algorithm which is considerably faster (for modular arithmetic computa-

tion) than adapting the conventional Newton-Raphson algorithm and an efficient tech-

nique for overcoming a problem peculiar to modular arithrnetic in using the powerful

technique of Gauss elimination.

Implementation studies, frequently capitalizing on the results of analytic studies

of modular relations, have yielded techniques for time sharing of logic elements to

permit a designer to trade speed for complexity or for programming a computer to

extend its range, as well as several design techniques which lead to a significantly

reduced component count in adders and multipliers. Several specific sample imple-

mentations were derived to obtain accurate gate counts.

A functional simulation of modular arithmetic computation on a conventional com-

puter was developed and used as an aid to analysis and to provide statistical data on

the operation of various algorithms.

The next section summarizes significant conclusions which may be drawn from

the results of this study. Section 3 collects recommendations for further study which

are described in greater detail in several referenced paragraphs of this report.

Manuscript released by author for publication February 1963 as an ASD Technical

Documentary Report.

1-1

Section 4 presents the results of the numerical analysis studies, both of funda-

mental operations and of applications to mathematical problems. Section 5 describes

the simulator and its application.

Section 6 describes a possible modular arithmetic computer organization and con-

trol specification. It also compares modular arithmetic and conventional computers.

Finally, Section 7 presents techniques and results of implementation studies.

1-Z

2. CONCLUSIONS

The modular arithmetic technique should be considered as a serious competitor

to conventional arithmetic techniques in any fixed-point computer. This general

conclusion is derived from the specific conclusions which follow and which, in turn,

are drawn from the study results presented in Sections 4, 6, and 7:

a. A broad, almost continuous spectrum of tradeoff between complexity of

mechanization and speed of operation exists for modular arithmetic computers.

b. A typical modular arithmetic computer using presently available numerical

algorithms and techniques for minimizing the implementation complexity of modular

arithmetic would have the following speeds contrasted to a comparable conventional

fixed-point computer of reasonable range:

kddition and subtraction - twice as fast

Multiplication - ten times as fast

Division - one-third as fast

Sign determination - five to ten times slower

c. A modular arithmetic computer can efficiently use fixed radix subroutines;

however, special subroutines which minimize the use of division and/or sign deter-

mination can increase the efficiency of the computer. A specific example is the

square- root algorithm of paragraph 4. 1. 6.

d. The most economical mechanization in terms of computations/unit cost is

by means of solid state logic elements.

e. The mechanization producing greatest speed is with semiconductor logic

elements.

f. The use of signed residues increases speed of certain operations and re-

duces the logic element count ot the arithmetic units.

2-1

3. RECOMMENDATIONS

On the basis of the studies and results described in detail later in this report,

several study areas are recommended. The present state of the art in modular

arithmetic is developed enough that further studies of a general nature on funda-

mental algorithms are not recommended. However, the problem of sign or magnitude

determination is so important in itself and in several key algorithms that specific

promising ideas should be investigated.

On the other hand, studies of implementation and of techniques. for minimizing the

cost of implementing modular adders and multipliers are highly recommended. Such

studies should be oriented to capitalize on properties peculiar to modular arithmetic.

On the basis of studies of this type reported herein, considerable progress can be

made in this most important area.

Specific study recommendations follow. In each case, details of the items listed

can be found in the referenced paragraphs of this report.

a. The use of continued fraction approximations to find 2 small integers whose

ratio is a good approximation to the ratio of 2 large integers. Paragraph 4.3. 1.

b. The use of a cyclic orientation algorithm in ordering lists of numbers and

in magnitude comparison. Paragraph 4.3. 2.

c. The generation of efficient table look-up procedures for modular arithmetic

computers. Paragraph 4.3.3.

d. Optimum memory addressing techniques for modular arithmetic computers.

Paragraph 6.5.2.

e. The study of an optimum instruction repertoire and of hypothetical. computer

configurations in solving specific problems through the use of a classical simulator.

Paragraph 6.5.2.

f. The use of mod m arithmetic units to perform mod k arithmetic to increase

system reliability or range for special problems. Paragraph 6.5. 2.

g. The special properties of the Boolean functions of modular arithmetic as a

subclass of the class of i2n Boolean functions of n variables. Paragraph 7.3. 2.

3-1

h. The further use of multiphase techniques to simplify mechanization at only

an insignificant decrease in speed. Paragraph 7.3.2.

i. The sharing of logic between adders and multipliers to reduce total

arithmetic unit complexity. Paragraph 7. 3. Z.

j, The use of isomorphisms between various residue groups as a means of

determining low cost implementations for large moduli as well as for sharing of

hardware as in i. Paragraph 7.3.Z.

k. The use of pseudo-single moduli to decrease mixed radix conversion time

both separately and in conjunction with wire-twisting techniques. Paragraph 7.3. Z.

3-2

4. NUMERICAL ANALYSIS

4.1 FUNDAMENTAL OPERATIONS

4. 1. 1 Sign and Magnitude Determination (Two-Sided Mixed Radix Notation)

It is well known that any integer, x, may be written in mixed radix notation,

x=al +a ml +a3 mI m2 + ... +a m 1 m ... m1 21 3 12n 1 n-i1

where 0 <a. <m., i= 1, 2 ... , n, and0 <x<m mi n... m . The radices, m.,- 1 1 - 1 n 1

need not be distinct. If the a. are permitted to take on negative, as well as positive,
1

values, the notation is called 'two-sided' mixed radix notation (TSMR). In this case

it is required. that the a. be of least absolute value; that is, Ia. I< (in. - 1)/2 for odd

m i and I ai I < m i /2 for even m.. If m. is even and IaI = mi/2, a i may be either

positive or negative, but not both. If only m 1 is even, it can be shown that the above

TSMR notation determines a unique x, such that jxi < m 1 m. ... mn/2 = M/2.

However, if some other rn. (i > 1) is even, lxI may not be less than M/2. When1

lxi = M/2 (and only mI is even), x = M/2 or -M/2 according as a1 is interpreted as

positive or negative when Ia 1 1 = 'In/2.

A principal merit of TSMR is that it provides a simple means of determining the

sign of a number, x, given in residue form and of comparing the magnitude of x with

that of another number. For, it can be shown readily that the magnitude of any non-

zero term in the TSMR expression above is greater than the sum of all terms to its

left in the expression. If follows from this that, if ak is the rightmost nonzero

coefficient in the above expression, then

1 1
(a k K < <(a k +) K,

where

K=m mi n 2 .. ink- l

Obviously, then, the sign of x is the same as that of ak' Furthermore, if

y = b I + b m 1 + b3 m I m 2 +... + bn m I m ... mn

4-1

is the TSMR expression for y, x > y if a > b and x < y if a < b . If a = b , x > yn n rn n n n

or x < y according as a n is greater or less than b etc. Proceeding in thisn-l n-l'

manner gives the expected result that x = y if and only if a. = b., i = 1, 2, . . . n.
1 1

In order for TSMR to be of any practical value, a means must be provided to con-

vert a number, x, in residue form to TSMR form. If the moduli, i., are relatively

prime and the residues are given in least absolute value form, it follows from
equation 1 above that y = yl - bI (mod m) and (yi 1 - bi)/mi I mb. (mod m.),

abv-htyy ' md ~ l - - imI

1 < i < n. Since the m are relatively prime, we can eliminate them in succession
i

from these n equations and obtain the coefficients, b b .. , b

For example, if we permit only the residues 0 and 1 (mod 2), the moduli, mI = 2,

in 2 = 3, m 3 = 5, m 4 = 7, will allow unique representation of all integers x such that

-104 < x < 105. Then, 103-(l, 1, -2, -2) produces the following array as mil , in 2 ,

and m 3 are eliminated:

mod 2 3 5 7

Yl bl =1 1 -2 -2

Y2 b2 0 1 Z

Y3 b3 = 2 3

Y4b = 3.

Hence, 103 = 3(2 3 5) + 2(2 - 3) + 0(2) + 1

If the "inverses' of the m. (tha' is, s., such that s,..m. 1 (mod m), i < j) are
1 1 13 1

stored in a table, any division by an m. in the above process can be performed as a

multiplication by the corresponding set of s.. Thus, the entire elimination process

can be completed using only (n - 1) subtractions and (n - 1) multiplications for the

n moduli, m I, m 2 . inn. m . Since lb I l<mi/2, the coefficients, b1 , b 2 . b

can be stored as a set of residues.

Conversion from TSMR back to residue form may be effected by evaluatine the
expression, a I + a 2 mI + a 3 m I m2 + ... + a n m I m . .. m If the n noduli are

available from an n-word permanently stored table (word 1 = mlI, word 2 = in., etc),

the (purely modular) conversion again requires (n - 1) multiplications and (n - 1)

additions. However, unless the moduli are arranged in ascending order

(mI < m 2 < ... < m), it is also necessary to reconvert the a. to residue form by1n I
routing them through the input decimal-to-modular converters.

4-2

4. 1. 2 Overflow Detection

In the following paragraphs the problem of overflow detection is discussed. In

paragraph 4.1. 2. 1, a relatively simple method of detecting additive overflow is

presented. In paragraph 4.1.2.2, a somewhat tedious method of detecting multipli-

cative overflow is described, while in paragraph 4.1.2.3 a more rapid solution to

this problem is given. This solution, however, requires a small stored table which

is also used in the processes described in paragraphs 4. 1.5, 4. 1.6, and 4. 1.7.

Finally, in paragraph 4.1.2.4, overflow detection of the result of perhaps a compli-

cated sequence of calculations is discussed. Here, no attempt is made to detect

overflow of a single calculation; indeed, if such overflow occurs but is later cancelled

by a further calculation of the sequence, it will, as is desired, not be detected.

4.1. 2. 1 Additive Overflow

The problem to be considered here is how to detect, by means of modular arith-

metic operations on the addends and sum, additive overflow when it occurs. Two

properties of such overflow are immediately obvious: First, at most one overflow

can occur, since 0 < lal < M and 0 < IbI < M imply that 0 < lal + Ibi < 2M, where

M is the machine range; second, overflow cannot occur if a and b have opposite signs

because in that case, 0 < ja + bj = I lal - Ibi I < max (lal , Ibi) < M.

For the remaining cases, if a and b have the same sign and c = Ia + b I (mod M),

then overflow occurs (that is, Jal + Ibi > M) if and only if c < lal (or c < I bi); for,

if no overflow occurs, c = Ia + bl = jal + lbI > Ial . Hence, c < Jai implies that

overflow has occurred. Conversely, if (one) overflow occurs, then

c = lal + bI - M < Ial, since Ibl - M < 0.

If "two-sided" residue notation is used, both lal and I bI < M/2, so that

lal + IbI < M and overflow (lal + IbI > M/2, in this case) can be detected by the

presence of the "wrong" sign on c' E a + b (mod M).

4. 1. 2. Z Multiplicative Overflow - Method I

The problem of overflow detection in multiplication is considerably more difficult

than in addition because more than one 'overflow" can occur in a modular arithmetic

multiplication; that is, I x.y1 may be greater than 2M. Consider the following ex-

amples in which "two-sided" residues are used with the moduli 2, 3, 5, and 7:

4-3

78 103-(0, 0, -2, 1) • (1, 1, -2, -2)

= (0, 0, -1, -2)-54 08034 (mod 210);

9 • 2-9 =(1, 0. -1, 2) • (1, -1, -1, 1)

= (1, 0, 1, Z)-51 E 261 (mod Z10).

If z a ixI jy (mod M) is such that izj =xi, then either x = 0 or ljy = 1, and

similarly for Izi = WyI' Therefore, if Izi = jxi or Izi = lyl , overflow cannot

occur. And, as in addition, if z has the "wrong" sign, or if izi < lx or izi < ly I

then overflow has occurred. But, if Izi > lx and Izi > WI , overflow may occur,

as in the multiplication of 9 by 29 above, or may not occur, since izi = Ix . YI > ijx

andIx • y[> IYl, if lx •yi <Mandboth lxi and jyj > 1.

In the case where iz > lxi and izj > Iy , we proceed as follows. Let k be a

positive integer such that k 2 < [machine range] <(k + 1)2, and assume for conven-

ience that lxI > WYI . Define a and b by a = lxi - k and b = y - k. Obviously, if

a< 0 and b < 0, then lxi •y[< k , and overflow does not occur. Likewise, if
2a> 0 and b> 0, then ixi •y > (k + 1) , and overflow does occur. Here, and in the

remainder of this section, we say that overflow occurs if and only if IxI I yjY >

[machine range] . If "two-sided" residues are used, the machine range is different

for positive and negative integers. This complicates matters somewhat, but with a

few modifications, the following method is still valid.

In the case where a > 0 and b < 0, let us examine the expression, lxi I IyI

(k + a) • (k + b) = + (a + b) k + ab.. If we define d > 0 such that d = [machine

range] - k2 , then lxi • I yj overflows if and only if (a + b) k + ab > d. If we re-

arrange (a + b) k + ab to give a(b + k) + bk = a I yI + bk and note from the definition

of b that 0 < - b = Ibi < k and'iy <k, it follows that a < bi implies that

a I y I < JbI y < IbI • k. Therefore, if a < Ibi , then (a + b) k + ab=

a I y I + bk < 0 < d, and overflow does not occur.

Let us consider the remaining case - that for which a > ibI and a > 0 > b. It
2follows from the definition of b that (a + b) k + ab + b = (a + b) . (k + b) = (a + b) I y I

Therefore, if (a + b) iyi > d + b 2 , overflow occurs. But, I bI < k, so that

+ b2 < d + k2 [machine range] . Hence, if (a + b) Iy overflows, it is certainly
2 b2

greater than d + b ; otherwise, we can compare (a + b) yI with d + b to determine

whether or not jxi •yj overflows.

Now only one problem remains - that of determining whether or not (a + b) Iy

overflows. For this, we set (a + b) = x I > 0, and repeat the entire procedure for

4-4

xy I y I . It may be necessary to do this several times, thus making this overflow

detection method an iterative procedure.

Let us summarize this method by defining

X0 = x, x . = lxi - 1 1 + b-k, a.i xj - k, and z. i , yI (mod M).

It follows that if any x, = (a, _ + b) yI overflows for i > 0, 1xi I I y1 overflows.

That is, if b >0 or if zi < xii for any i, then lxi" yi overflows; and if IZol =

I 01, 17,0 =Io 1, or a0 < b ,then lxi iyi does not overflow. Otherwise, for some
> 0, 1z i -- i or z, = YIor a.<Ibl (since a i<a -1, this must happen event-

ually), and overflow occurs if and only if (a 0 + b) I y ; x 1 IYI = z 1 > d + b

Thus, we can detect multiplicative overflow with the above method, but several

'iterations" may be required in certain cases. Such instances probably occur quite

seldom, since the test, z i < Ixii or z, < lyl , is usually sufficient to detect any over-

flow in one or two "iterations. "

As an illustration of this method of overflow detection, let us reconsider the

second example of multiplication given above. We have M/2 = 105, so we set k = 10

and d = 5. Also, x 0 = Z9, y = 9, and z0 = 51. Since z0 > lx0' < jyj , it is necessary

to calculate a 0 = x01 - k = 19 and b = jy - k =--1. Then a = 19 > Jbi = 1, so we

setx, =a0 + b = 18. Now, x, yl = 18 • 9 = 162 -- -48 (mod 210), which gives

= -48 < IX, I. This indicates overflow has occurred.

4.1.2.3 Multiplicative Overflow - Method II

Since the overflow detection method given in the preceding paragraph requires so

many operations, we have devised a simpler method which makes use of a stored

table. This method, unlike the preceding one, is valid only if "two-sided' residues

are used or if integers between M/2 and M are regarded as being negative (that is,

any x such that M/2 < x < M would represent the negative integer, x - M). Such

provision would probably be made for negative integers in a modular arithmetic com-

puter.

A s in Method I, we fir st compare zaII - I iyj (mod M) with Ix I and I yI. If
0

izI > lxI > I y, we refer to a table consisting of all integer powers of 2 from 2 = 1

through 2 n , where 2 n < M/2 < 2n 1 , to find integers, p and q, such that
1 < Ix1 < 2 p and 2 < y< 2 q ' Ifp+q<n, then lxi •y < 2 < 2 n

and no overflow occurs. Similarly, if n + 3< p + q, then 2n + l< 2p + q -2 < yI •Yi

and overflow occurs.

4-5

If p + q = n + 1, then 2 n < lxi - Yl < 2 n + 1 < M, and any overflow will have

been detected by the presence of the "wrong' sign on z. Moreover, if p + q = n + 2,
thn2n< [i - n +

then 2 < l < 2 < 2M, and any overflow such that M/2 < Ixi I iy < M

or 3M/2 < Ix[I yI < 2M will also have been detected by the "wrong" sign on z

We must now differentiate between the two following cases for p + q = n + 2:

Case I - 2 n < lxi • yj < M/2, and overflow does not occur;

Case 2 - M < lxi .-- fI < 3M/2, and overflow does occur. To do this, we multiply
2- by Iy and examine the sign of the result. In Case 1 we have

n-1 < Ix/21 -lyl < 2 P - 1 IyI <Ix " lyl < M/Z, so the sign of z 1 02 -1 YI

(mod M) will be plus; but in Case 2, we have

M/2 < ix/ZI •y[< Z - 1 yj < 2P - Zq = Zn + 1 <M, sothe signofz willbeminus.

For example, the overflow in the multiplication of 9 by 29 in paragraph 4. 1.2.2

above is dete-ted by Method II as follows: x = 29, y = 9, and x = 51, so

[zi > lxj > lyi. We refer to the table to find p = 5 and q =4. Then, p + q = 9 > 8

= n + Z, which indicates overflow.

As a second example, consider the multiplication of x = -31 and y = 8 in the same

system. Then x - y = -248 a -38 (mod 210), and Izi > lxi > lyl. From the table

we find p = 5 and q = 3. This gives p + q = 8 = n + 2, so we calculate z 1 = 2 YI

= 16 . 8 = 128 S-82 (mod 210). Since the sign of z is minus, overflow has occurred.

We can also give a different treatment to the above situation where

n + l<p + q< n + 2. If we define a and b by a =x - 2 and b = y - 2 l,

then

lx , .y = 2 p + q - 2 + a 2q- + b • - 1 + ab. (2)

Since 0 < a < Z - and 0 < b < 2c - 1 then each of the four terms on the right side

of equation 2 is < 2 p + q - 2 < 2 n . Hence, multiplicative overflow occurs in

lx- ly I if and only if additive overflow occurs in equation 2.

For example, overflow can be detected in the above multiplication of x = -31 and

y = 8 as follows:

From equation 2 we have

lxI • [y[= 26 + 15 • 2 2 + 4 • 24 + 15 - 4 = 64 + 60 + 64 + 60.

Overflow occurs in the addition of any two of these terms, so lxi • jyj overflows.

In general, this treatment of the case where n + I < p + q < n + 2 requires more

operations than the treatment involving z I = Zp
- y[, since two to six magnitude

4-6

comparisons are required to detect the presence or absence of additive overflow in

equation 2. Therefore, despite the appealing conceptual simplicity of the treatment

using equation 2, the other is preferable since it requires less machine operations.

The requirement of the table of powers of Z for Method II is really quite modest

even for modular arithmetic computers with a large machine range (for example,

if M = 10 , n = 29), and as we will show in paragraph 4. 1.5, the table can be used

for other important modular arithmetic operations.

While the overflow detection methods given above are not as simple as those

commonly used in most binary computers, they are the simplest yet obtained for

modular arithmetic. They should not be "wired into" a computer and performed

automatically after every addition and multiplication, but rather should be used

where needed in carefully constructed programs.

4. 1. 2.4 "Problem-Oriented" Overflow Control

In many of the most important computations that occur (for example, the tabu-

lation of a polynomial or the iterative solution of an algebraic or ordinary differential

equation), we must calculate a sequence of integers which satisfy a certain system

of recurrence relations. Oftentimes, these recurrence relations can be used to de-

tect overflow in the calculation of an element of the se'-nce from its predecessors.

For instance, if xi , .x2 1 , is a non-decreasing sequence of integers such that

x < axn for some positive integer a and for all n, then the integer a can be used

as a redundant "checking modulus" to detect overflow, provided that a is less than

M, the product of the moduli, and is relatively prime to all the moduli. That is, if

the residues a. =x. (mod a) are calculated along with the "usual" residues, then a.1 1 1

can be used to detect overflow in the form M < x. < aM, where x.I < M. We cal-

culate a.', the trial residue of x. modulo a, from the residues of x. relative to the1 1 1

usual moduli and compare it with the "true" residue of x. (mod a) which is a.. If
£ 1

a.' /a, then overflow has occurred in the calculation of x. from x.

As an extremely simple example, let us use the moduli 2, 3, 5, and 7, and

assume the recurrence relation to be x = lOx - xn where x0 = x, = 1n n -1 n- Z' weex

Then, since x 2 > 0, it follows that x < lOx < llx Hence, we can usen-g ' n n-l1 n-il

a = 11 as "checking modulus" because 11 < 2 • 3 • 5 • 7 = 210 = M and has no common

divisors with any of the moduli. The calculation proceeds as follows:

4-7

n = 0 1 Z 3 4 5

x = 1 1 9 89 881 8721
n

a = 1 1 -z I 1 -z
n

a = 1 -2 1 -3 1
n

Since a 4 and a 4 1 are unequal, we conclude that overflow occurred in the calcu-

lation of x 4 Furthermore, since a 4 - a 4 ' = 4 and M N 1 (mod a), we can solve the

congruence z M 4 = a 4 - a 4 ' (mod a) to yield z a 4; from this we conclude that 4

"overflows" have occurred - that is, 4M <x 4 < 5M.

It should be stressed that, when using this method of overflow detection, it is

essential to notice the first discrepancy which occurs between a. and a.', for later

a. and a:' may spuriously agree. Also, the estimate of the amount of '"overflow" is

valid only for the first x. which overflows.

The principal utility of this technique, which is concerned only with overflow of

the final result of a calculation, is in complicated formulas in which overflow of

individual terms may be cancelled by other terms of the formula. An example of

such a formula is the error estimate, e., of the division process described in a later

paragraph. (However, in that case, it is proven that e. never overflows, so that no1

detection is required.) It may also be noted that this same philosophy of "problem-

oriented' overflow control may in some cases be applied without the use of redundant

moduli by comparing X n with [M/a] as is done in paragraph 4.Z.2.

4.1.3 Division by a Modulus or a Product of Moduli-Scaling and Round-Off

We are given the number x in modular form, x = (x,, x 2 ... , xn), in the system

with moduli mI, In 2 , , in where the x. Is are either least nonnegative or leastn 1

absolute value residues. We wish to divide x by one of the moduli, say mi.. In gen-

eral, x will not be divisible by mi., although (x - xi) is; therefore, the integer result

which the process will give is generally in error by x./m. . There is no problem in

obtaining the residues, x. , of the quotient x = (x- xi)/m i from the congruencesJ 1

m. x. a(x. - x.) (mod m.), j = 1, 2. n, j $ i (3)

since if j i, the moduli are relatively prime. Only the residue, x. , presents

difficulties. If j = i, equation 3 does not have a unique solution, and another tech-

nique must be used to find this particular residue.

The residue, x. , can be computed by using the property that, in the mixed radix

representation of x in which m. is taken as the last modulus, the last coefficient

4-8

must be zero. To see this, consider the mixed radix representation of x with m.

taken first:

x = x. + al mi + a2 m m., + ''+an M ml m2 . ."i "mn-I (4)

Then,
x- x mI m . . m i . . . m

x =m =a +a m I + ... +a (5)m .i1 1 n - 1 .

Comparing equation 5 with the mixed radix representation of x in which m. is taken

last gives
m 1 m 2 ... m m m ... m

x = +z b I + . + b 2 n.+ b n n. (6)
I 1

This comparison shows that

bI =a I, bZ = a2 , . .. , b = an - V but b = 0. (7)

(Alternatively, b = 0 follows from the fact that the last coefficient in the mixedn

radix representation provides ari estimate of the magnitude of a number. For ex-

ample, with least nonnegative residues, bn M/m.i <x

But,
x- x. M-x. M

x = - , (8)
m m m.

where M is the product of all the moduli. Hence, b = 0.) The reduction of x to then

mixed radix representation shown in equation 6 leads to a congruence, by the tech-

nique of paragraph 4.1. 1,

C x i -C b 0 (mod m), (9)

1 xi - 2 n1

for the unknown residue, where

C1 = i d.. (mod in.) (10)

and C2 is determined by the known x .s. The constant, C 1 or, better yet, its
2 1,inverse which is simply 7r mj (mod mi) may be precomputed and stored. Note that

C 2 is the last mixed radix coefficient of the modular number:

4-9

(x1' x2 i.. xi- 1 0, xi + 1 X

so that x. is the product (modulo mi) of this coefficient and the inverse of C

To divide x by the product of several moduli, say m 1 m.2 m3 , we proceed in a

similar fashion. (Any of the moduli may be chosen; these particular ones are used

here for convenience of notation.) In general, x will not be divisible by mI1 m 2 m 3 ,

but x - x 1 , 2, 3is, where x, 2, 3 is its residue mod m In 2 mi3 . Therefore, the

integer result (x - x 1 , 2, 3)/ml m 2 m 3 is in error by no more than

X1, 2, 3/M 1m 2 m 3 . We obtain x 1 , 2, 3
b y

performing the first few steps of the

mixed radix conversion of x with rn1 , m 2 , and m 3 as the first three moduli:

n-l
x = c + c mi + c m m + c mm m + +c m. (12)

1n i=l(

Subtracting b = c I + c 2 miI + c 3 m I m 2 from both sides of equation 12 and dividing by

m 1 in 2 m 3 results in

* x-b n-l
x =c +c m +... in . (13)

i 1 m2 m3 4i=4n 4~

The magnitude of b must be investigated. For least nonnegative residues

b< m m m 3 -1 (14)

and hence b is x1, 2, 3" For least absolute value residues, extra care must be

taken. I an even modulus is among m 1 , mi2 , and in 3 , it must be eliminated first,

so that b is x, , 3" Each residue, x, of x of the form

x i - c 1 c 2 c 3
x. ! (mod m.) (15)

i n In 2 m 3 m 2 m 3 m 3

for i 1, 2, 3 is computed mod n.. The residues x 1 , x 2 , and x 3 are indeterminate
1

as before, but are found by a process analogous to that used in the division by a

single modulus. In the equations analogous to equation 7, the last three coefficients

can be shown to be 0. Hence, we proceed with the mixed radix conversion in which

Mil, m 2 , and m 3 are the last to be eliminated, until we come to a point where we

have three terms in the form of equation 9. At this point, each of these terms can

be set congruent to 0. The constants analogous to (C 1) 1 of equation 9 are precoi-

putable as before; and in fact are

4-10

Sm. (mod i) i = 1, 2, 3;
j>3 . I

and x. is found as before.

A clarification of the size of the errors involved follows. Just after equation 14,

mention was made of one peculiar effect the even modulus can have in a least-

absolute-value residue system. In this same system, the residues of the even

modulus, m, differ in one basic aspect from those of the odd moduli in that one of

the residues is equal to m/2 in absolute value. The choice of whether it is positive

or negative determines whether a quotient with a fractional part 1/2 is rounded up or

down. The positive choice leads to rounding down, the negative to rounding up.

Furthermore, some care must be taken to ensure that in the rounding process, a

number very near the open end of the range (either + M/2 or -M/2) is not rounded in

such a way as to cause overflow.

For example, if we let m I = 2, m 2 = 3, m 3 = 5, and m = 7, we can divide 93"
3 4

(1, 0, -2, 2) by m2 m 3 = 15-.(1, 0, 0, 1) as follows:

To find the residue of 93 (mod 15), we perform the first two lines of the two-

sided mixed radix conversion of 93, taking the moduli m 2 and m 3 first.

Modulus 3 5 2 7

Residue 0 -2 1 2

1 1 3

Hence, 93 = 0 + 1 (3) = 3 (mod 15). Next, we subtract the residue of 93 (mod 15)

from 93 to obtain 90-(0, 0, 0, -1), and solve the simultaneous linear congruences

corresponding to 15 x 90: (1, 0, 0, 1) (x 1 , x 2 , x , x 4) (0, 0, 0, -1).

The results are x 1 0, x 4 = -1, and x 2 , x 3 are indeterminate. We set x 2 = x 3 = 0,
and expand (xi, x 2 , x 3 , 4 in two-sided mixed radix form, taking m2 and m 3 last.

Modulus 2 7 3 5

Residue 0 -l 0 0

3 0 0

0 -1

Using the elements from the last row of the above array, we have x 2 = mi I 4 (0)
*4

m0 (mod 3) and x 3 = m I m 4 (-1) il (mod 5). Hence, the "nearest integer" to 93 "15

is 6-(0, 0, 1, -1).

4-11

4.1.4 Conversion to Fixed Radix Notation

Let the binary expansion of a number w be:

=k c k - I C 1 + Ck 'w = co +Z +.''Zc k c-

Define

w. =Zw. +c.i i + c

and

Wk=W.

Then clearly

w. r c. (mod 2)
1 1

and

w. - 1 = (w. - ci)/Z, an integer.

The purely modular method for performing this division to determine w 1 in

modular form has been described in paragraph 4.1.3 above. Thus starting with

wk = w, the successive bits of w are obtained in the order of increasing significance

as the residues mod 2 of the w..
i

The conversion is made as readily to any radix which is one of the prime moduli

of the system. Composite radices such as 10 may also be utilized if their prime

factors (Z and 5) are used as moduli. In this case, the division procedure of para-

graph 4. 1.3 yields successively the residues mod Z and mod 5 of the digits of x, a

sort of modular coded decimal notation. The conversion to ordinary decimal is

quite simple - the digit is equal to its residue mod 5 when this residue is congruent

to the residue of the digit mod 2; if not, the digit is equal to 5 plus its residue mod 5.

In conversion to decimal form, care must be taken to ensure that positive digits

are computed. For conversion to binary, it is only necessary that 0, + I be used as

the residues mod 2.

The advantage of this conversion technique is that no special hardware is re-

quired. However, it is shown in paragraph 6.3.1 that for a machine using n moduli

with a decimal range of d digits, this procedure requires about Zd (n + 4) +3 clock

times as compared with n clock times for the high speed implementation of the

Chinese Remainder Theorem described in paragraph 6.2.5. Furthermore, the least

significant digits are generated first in the above procedure.

4-12

4.1.5 Division

The problem of division in MA is of great importance since many significant

problems require division at some point in their computer solution. Several

approaches to division have been tried with varying degrees of success and they are

described below, together with the particular difficulties arising in their use.

4. 1.5.1 Approximation of Divisor

A method for approximating the quotient of two integers by another integer has

been suggested in reference 1 . This method consists of choosing some product of

moduli as an approximation for the divisor and applying a suitable algorithm to ob-

tain either the greatest integer less than or equal to the quotient, or the integer

nearest to the quotient (that is, the quotient ''rounded-off" to the nearest integer).

If we wish to approximate x/y - q by {q}, the integer nearest to q, the algorithm is

given by defining

r f x/z, ro = x- qoy (16)

q.= q. i* I+fr. 1 /z}. r, r, 1 r, _r./z}

where z is a product of moduli such that y < z < 2 y. The integer approximations of

the divisions by z are obtained by the method described in paragraph 4. 1. 3 above.

From the definitions it may be readily shown that r. = r if and only if11 11
r 1 <2 z and that r < r -1 if and only if r, <y z. (What happens when2- 1 - i-1

z depends on whether 2 is rounded up or down in the procedure given in
paragraph 4. 1. 3) Thus, the algorithm stops automatically whenever the best qi has

been found. However, since z may be greater than y, a final check must be per-

formed. If 2j r, 1 > y (that is, (Ir,- 1> 1 y)), q must be increased or decreased

by one, according as ri 1 is positive or negative, to give the integer {q} closest to

x/y. Or, if it is desired to find the greatest integer less than x/y (that is, [x/y]),

qi must be decreased by one if r.I < 0.

A somewhat detailed analysis gives the result that a sufficient condition for

Yi1 <z is that i >- log (x - z)/log t, where y/z = I - t. However, this condition

is not necessary, although it does provide a reasonably good estimate of the nu.mnber

of iterations involved for certain choices of y. Certain other variations of the above

algorithm are possible, but the one stated above seems to be the most efficient in

terms of computation required.

4-13

While the above procedure requires only purely modular operations, it presents

some difficulties in its utilization. First, it seems that z would have to be deter-

mined by means of a table look-up procedure. The usual requirement that the moduli

be relatively prime combined with the requirement that there always exist a z be-

tween y and 2 y impose restrictions on the choice of moduli so that it seems the table

would necessarily consist of all products of the first n primes (they being the n

moduli) taken I, 2 n - I at a time. Such a table would then contain (2 n - Z)

words, a rather formidable number for all but small n Secondly, the above

algorithm is capable of giving only integer approximations.'

4. 1 .5.2 Newton-Raphson and Similar Methods

A Newton-Raphson method for computing x/y by an iterative procedure has been

suggested in reference 1, pp 93-97, and another similariterative procedure was sug-

gested in reference 3. These methods seemadaptable toMA ifthe denominators are

kept in a certain form, say, powers of 2. While these methods do converge fairly

rapidly to a good approximation of x/y, overflow is usually encountered after only 2 or

3 iterations - long before the desired accuracy of approximation is obtained. This over-

flow would not be a problem if some means of reducing numerator and denominator by

a common factor were known, but no convenient method of doing this has been found

and a method which would retain the proper form of the denominator seems particularly

difficult. It should be mentioned that a multiple-word method of representing integers

in MA using M as a radix has been suggested in reference 1, chapters 8 and 9, as

well as in reference 2, and in the former report, the Newton-Raphson method was

used for the division of numbers represented in this way. However, in addition to

requiring two to three times as much storage capacity, this representation of num-

bers requires such complicated addition, multiplication, and sign determination

methods that all the inherent advantages of MA may be lost in its use.

4. 1.5.3 Division Using Powers of Two

A somewhat efficient division procedure which uses a stored table of powers of

two has been described in Y.A. Keir, P.W. Cheney, and M. Tannenbaum, "Division

and Overflow Detection in Residue Number Systems, " IRE Transactions on Elec-

tronic Computers, Vol. 1 EC-iI, August, 1962, pp. 501 - 507. This method, which

is essentially a variation of the usual method of division by repeated subtraction of

the divisor from the dividend, generates exactly one binary bit of the quotient per

iteration. It is not subject to overflow error and seems to require little "extra

hardware," but it gives only the "integer part" of the quotient and is not as fast as

might be desired.

4-14

4.1.5.4 An Optimal Division Method

We shall now describe another method which uses a stored table of powers of two.

However, instead of giving only the "integer part" of the quotient as does the method

described immediately above, the following method approximates the quotient, a/b,

of two integers by a "fraction" in the form x • 2j , where x is an integer in residue

form and j is a nonnegative integer. The convergence in this method is nearly three

times as rapid as that of the method described in paragraph 4. 1. 5.3.

We assume that a and b are nonzero and that their absolute values are both less

than or equal to M/2, where M is the product of the moduli. Furthermore, we

assume the availability of a stored table of powers of 2 from 2 0 to 2 n , where n is the

integer such that 2 n < M/2 < 2n + 1. Each element of this table will consist of the

"two-sided" mixed radix coefficients of a power of 2, the residues of the same num-

ber, and the corresponding exponent of 2.

To obtain an initial approximation, xi, to I a/b1, we convert a and b to "two-sided"

mixed radix notation, and change signs, if necessary, to obtain the absolute values

of a and b (at the same time, we can also determine the sign of the quotient from the

signs of a and b). Next we use the "two-sided" mixed radix coefficients of lal and

IbI to find integers p and q in the table such that

2p < lal <2 p (17)

and

2 q- < I bi < 2 q

It follows that

2p - q - 1 2 p - 1/ 2 q < Ia/bI < 2 P/ 2 q - 1 2 p - q + I

therefore, we set the first approximation x 1 = - q -
j
, where j is determined as

described below.

If we define e1 by

e 1 = Z - j lal - Ibi • x 1

it follows from equations 17 and 18 that

(2-i , 2p.- 1 - 2 q . 2p - q - j) < e 1 < (2- j . 2 p - 2 q -1 2 p - q - j) (19)

4-15

which gives

fel <I - - 1

Since Ial < M/2, it follows that p < n + 1, so e will not overflow if j is chosen such

that 0 > j > (p - n - 1).

Since, by definition, el = 2.. b (a/b - x 2J), e 1 is a convenient estimate

the error in the approximation of a/b by xI Zj. To obtain a more precise estixu ate

of this error, we convert e to ''two-sided' .-nixed radix form, determine its sign, and

z1 - 1
refer to the table to find an integer zI such that 2 < ell < 2 . Next, we im-

z- q

prove our approximation to Ia/bI by defining x 2 by x. xI ±2 , taking the plus

sign if eI was positive, and the minus sign if el was negative. Obviously, we can

continue this process, defining e., z., and xi by:
1 1 1

ei = 2 al - Ib! x.; 2 < led < 2 (20)

and

z. - q
x.i+ =X xi 2 1

where the plus or minus sign is used according as e° > 0 or e. < 0.
1 1

From the definitions (equation 20) of e. and x., it follows that le i1
z qz. - q

+(Ie i - 2 1b]) If the plus sign holds, we may apply equations 17, 18, and

20 to yield:

ei + ii < (leit- 2 1 2q - <, 2 zi - 2' 2 2 (21)

similarly, if the minus sign holds, then

ei + - -< qz- qei) <(z -zz)2z -1. (22)

Hence zi + < z. - I, which implies that the sequence, x , x2 , converges to

I a/b! with an increase in accuracy of at least one binary "bit" per "iteration.

If desired, j can be decreased in succeeding "iterations." If 0 > j > (z. - n - 1),

it follows from the above analysis that Iei + < n < M/2. In addition, it follows

from equation 18 that if j > (p - 2 - n + 1), then all x. are less than or equal to 2n

4-16

Hence, by keeping j within these bounds, overflow in e. and x. can be prevented. (It-j 1 1

should be pointed out that each of the terms 2 "j - Ia[and Ibi x. will often overflow

considerably, but because of the unique characteristics of the modular arithmetic

number system, the difference of these terms, which is e., will be correct and will

be within machine range if 0 > j > (z.i 1 - n - 1.)

If the sequence, x 1 , x 2 , is terminated with, say, xs, a final test may be

necessary to ensure maximum accuracy. If z = q - 1, we compare Ie I with lb I.
5 5

If 12e I > IbI , we increase or decrease x by 1 according as e > 0 or e < 0;

otherwise, we leave x unchanged. This guarantees that
5

e = 2 - j ' lb I' I la/bi - x I< Ibl/2, (23)

from which it follows thatla/b - x 2I= le [bI. Z < 2j - Ifz <q- 1,

this test is unnecessary sincel a/b - x • = le I lbi- 2j < 2 . 2 q - j

z +q - +j 2j -=2 < <

To illustrate the unusual flexibility of the above division method, we now present

two variations of that method. In the first, we have adapted the method to give max-

imum efficiency in finding the integer nearest to the quotient. In the second, the

method is adapted so as to give "optimal' performance; that is, j is controlled so as

to give the maximum possible I ei Is and xi, which ensure, respectively, maximal

speed of convergence and maximum accuracy obtainable with the given machine

range. A third variation, not described here, permits the modular arithmetic com-

puter programmer to control the accuracy in each division by specifying a j < 0 in the

division instruction.

For clarity, we present these two variations in step-by-step form, followed by

illustrative examples.

a. Variation I - Nearest Integer Division

Step I - Convert a and b to "two-sided" mixed radix form and determine their

signs. If b = 0, turn on the divide error indicator (if any) and halt. Otherwise,

change the signs of the mixed radix coefficients for a and b, if necessary, so as to

obtain jal and I bl. At the same time, set the sign of x to be plus if and only if a and

b have the same sign. Compare lal and lb I; if Ia I< IbI, go to Step 2; otherwise,

go to Stej,

Step 2 - Calculate 2 a 1, convert it to "two-sided" mixed radix form, and de-

termine sign. Compare 21 aI andI bi . If 2 [a I> IbI or 21 a 1<0, set the magnitude

of x equal to 1; otherwise, set x = 0. Terminate division.

4-17

Step 3 - Refer to the table to find integers p and q satisfying equation 17 above.

Calculate r = p - q and obtain 2r in residue form from the table. Set x', the mag-

nitude of x (without sign), equal to 2r and go to Step 4.

Step 4 - Calculate e lal - lb I . x', convert it to "two-sided" mixed radix form,

and determine its sign. If e = 0, terminate division, otherwise, go to Step 5.

Step 5 - If necessary, change the sign of the 'two-sided' mixed radix coefficients

for e to obtain lel . Refer to the table to find an integer z such that 2z - 1< lel < 2z .

Compare z and q - 1. If z > q - 1, go to Step 6; if z < q - 1, terminate division;

otherwise go to Step 7.

Step 6 - Calculate t = z - q. Refer to the table to find 2t in residue form and in-

crease or decrease x' by that amount according as e > 0 or e < 0. Go back to Step 4.

Step 7 - Calculate 2e, convert it to "two-sided" mixed radix form, and determine

its sign. Change signs, if necessary, to obtain I Ze 1. Compare Ize land I bi. If

I Zel > Ib 1, increase or decrease x' by 1 according as 2e > 0 or 2e < 0; otherwise,

leave x' unchanged. Terminate division.

b. Variation 1 - Example

Let a = 136,047 and b = 85.

Then,

a/b = 1600.5529

Since I aI > Ib 1, we execute Step 3 and obtain p = 18, q = 7. Let us now refer to

each "cycle" through Steps 4-7 as an "iteration." The results of the successive

iterations are:

Iteration 1 Iteration 2 Iteration 3

X' = 2 = 2048 x' = 2048 - Z
9 x' = 1536 + Z6

= 1536 = 1600

e = -38,033 e = 5487 e = 47

z = 16 z = 13 z = 6 = q- 1

At the end of Iteration 3, Step 7 is executed with the result that I 2e 94 > 85 = Ibl

Therefore, x' is increased by 1 to give the final result x = 1601.

c. Variation 2 - "Optimal" Division

Step 1 - Convert a and b to "two-sided" mixed radix form and determine their

signs. If b = 0, turn on the divide error indicator and halt. Otherwise, obtain lal

and I bI and set the proper sign on x. Set j = 0. If a = 0, set x = 0 and terminate

division; otherwise go to Step 2.

4-18

Step 2 .. Refer to the table to find integers p and q satisfying equation 17 above.

Calculate r = p - q and obtain 2 r in residue form from the table. Set x', the mag-

nitude of x, equal to 2 r
. Calculate e = I al - IbI • x', convert it to "two-sided"

mixed radix form, and determine its sign. If e > 0, set j min = (p - q - n + 1);

otherwise, set jmin (p - q - n). Go to Step 3a.

Step 3 - Calculate e = 2 - I al - Ib• x', convert it to "two-sided" mixed radix

form, and determine its sign. I - imin)

Step 3a - If e = 0, replace x' by x' • 2 , set j =j and terminate

division; otherwise, go to Step 4.

Step 4 - Obtain I el and refer to the table to find an integer z such that

2 z1 < leI < 2z , Calculate t = z - q + j -j in + 1. If t > 0, go to Step 5; if t = 0,

0- Jmin)

go to Step 6; otherwise, replace x' by x' 2 , set j = jmin' and terminate

division.

Step 5 -Calculate u = z - n - 1, and set v = Max (j + u, jmin) Obtain the residue

form of 2j -v from the table, and replace x' by - v (x' z - q), taking the plus

or minus sign according as e > 0 or e < 0. Replace j by v and go back to Step 3.
(j - J n)

Step 6 - Replace x' by x' • 2 and set j = jmin Calculate
(i - Jm. + 1)

e' = e • 2 mm , convert it to "two-sided" mixed radix form, determine its

sign, and obtain I e'[. Compare I e' I and lb 1. If]e'I > I bi , increase or decrease

x' by 1 according as e' > 0 or e' < 0; otherwise leave x' unchanged. Terminate

division.

Note: If division is terminated wiC. t = 0, the error is not greater than 2

if t < 0, it can be shown that the error is strictly less than

2t + ' min < 2mi If t = +1, the approximation is "exact"; i.e. , the error is

zero.

d. Variation 2 - Example

Unlike Variation 1, Variation 2 requires that the machine range be specified be-
n n+lI

cause n, the integer such that 2 < M/2 < 2 , is used. Hence, we assume the

moduli to be the eight primes from 2 through 19, which gives a machine range of

M/2 = 4,849,845. Since 2ZZ = 4,194,304; n = 22. Let a = 829,314 and b = 6,057.

Then a/b = 136. 91827637

4-19

Step 2 gives p = 20, q = 13, and jmin = -14. As in the example for Variation 1,

we give the results of the successive "iterations" below:

Iteration 1 Iteration 2

x' =27 = 128 x' = 7 (128 + 23) = 17,408

j=o j = -7

e = 54,018 e = 711,936

z=16 z=20

t= 18 t= 15

Iteration 3 Iteration 4

X' = 23 (17.408 + 27 x' = 2 . (140,288 - 2

= 140,288 = 2,243,548

j = -10 j = -14

e = -506,880 e = -1,907,712

z=19 z=21

t =11 t=9

Iteration 5 Iteration 6

x1 = 2,243,584 - 28 x' = 2,243,328 - 26

= 2,243,328 = 2,243,264

j = -14 j = -14

e = -357,120 e = 30,528

z = 19 z = 15

t= 7 t= 3

Iteration 7 Iteration 8

x1 = 2,243,268 + 22 x1 = 2,243,268 + 20

= 2,243,268 = 2,243,269

j = -14 j = -14

e = 6300 e = 243

z=13 z=8

t= 1 t = -4

Division is terminated at this point, with a/b being approximated by

2,243, 269 2- 14 . It should be pointed out that while x' is best for j = -14, less

than 'optimal" accuracy was obtained for this example since 2n < 2x < M/2 implies

4-20

that j could have been -15. To minimize occurrences such as this, the moduli should

be chosen so as to make M/2 approximate from below some power of 2.

The following table shows the convergence in the above example.

a/b = 136. 91827637...

Iteration x' x' 2i Error

1 128 0 128.00000000 -8.91827637...

2 17,408 -7 136.00000000 -0.91827637..

3 140,288 -10 137.00000000 +0.08172363...

4 2,243,584 -14 136.93750000 +0.01922363...

5 2,243,328 -14 136.92187500 +0.00359863...

6 2,243,264 -14 136.91796875 -0.00030762...

7 2,243,268 -14 136.91821289 -0.00006348...

8 2,243,269 -14 136.91827392 ... -0.00000245...
t +"

t+jmin -z16The maximum error predicted is less than 2 = 2 = 0.00001526

From the above examples, the advantages of this division method are obvious:

a. No overflow is possible so long as j is kept within the bounds prescribed

above.

b. The convergence is quite rapid; we have shown that at least one binary bit

of accuracy must be obtained per iteration, and in practice the convergence is

usually much faster than that. For example, in several simulator tests, each of

which involved 500 "randomly chosen" "optimal divisions, " an average accuracy of

2.85 bits per iteration was obtained.

c. Any desired degree of accuracy, from the nearest integer to the maximum

possible for the machine range, can be attained.

Furthermore, the additional circuitry required to implement this method in mod-

ular arithmetic computers is modest. The table of powers of 2 is quite small, con-

sidering the machine range, and it can also be used for overflow detection. Additional

hardware is necessary to handle j, but we anticipate that small binary adders and

registers will suffice.

It should be mentioned that the success of the above division method is dependent

upon the fact that powers of two are used. A brief investigation was conducted to see

if some other "radix" such as 8 or 10 could be used, but the results indicated that

enough complications would arise so as to render the method highly impractical if not

impossible.

4-21

4.1.6 Square Roots

The usual method for extracting square roots on a digital computer is the Newton-

Raphson method, in which the successive approximations, w i , to.fJZ are generated

by the equation,

1 2,iWi +1=: (wi + a2 /wi). (24)

Although for any positive initial approximation, w 0 , the sequence, wi, w 2 , w 3 ,
2converges quite rapidly to the positive square root of a , the method is not well suited

for modular arithmetic computation because at least one division is required to ob-

tain each w. from w.. Even with the "optimal" division procedure described in

the preceding paragraph, the amount of computation required is large enough to

offset the advantage of rapid convergence, particularly, when it becomes necessary

to use "floating-point" arithmetic (see paragraph 4.1.7) to avoid the introductioi of

errors by rounding-off to the nearest integer. Therefore, we have sought to modify

the "optimal" division procedure itself to enable us to extract square roots directly.

The resulting procedure, which is described below, does not converge as rapidly per

iteration as the Newton-Raphson method, but because it involves much less compu-

tation per term, the following method requires considerably less total computation

for any given degree of accuracy.2.
Given a in residue form and such that 0 < a2 < M/2, we find a first approximation,

x 1 , by finding an integer, p, such that Zp 1 < a 2< 2p. Since one of the integers,

2/

and (p - 1), must be even, it follows that 2 P _I< x, = 2 [p/21 < 2p/2 Moreover,

we know from the definition of p that 2 2 < a < 2p/2; therefore,I x,- al

P- 1 1/2 p- 3

<2 . (2 1.) < 2

Proceeding as in the derivation of the "optimal" division procedure in paragraph

4. 1. 5, we obtain more information about our first approximation by examining
2 2

el = a -x 1 . Obviously, a > x, a = x1, or a <xi, according as eI > 0, e1 = 0, or
e< 0; and, by considering the above bounds on a and xi, it follows that I ej < 2

p
-

Hence, e 1 cannot overflow.

We note that the differential of eI is given by del = -ZxI dx Therefore, to re-

duce the error to zero, we should have del = -eI or, equivalently, dx1 = eI/2xI ,

which is what is done in the Newton-Raphson formula. However, in order to avoid

the division indicated, we depart from the Newton-Raphson formula by approximating

eI/2X 1 by the ratio of the power of two high approximations of e 1 and 2x 1 . We find

4-22

z -1 z
an integer, z1 , such that 2 < el < 2 and correct by an amount equal to

2 , where p' = [(p + 1)/2] + 1. Generalizing this technique to form an iterative

procedure, we define x. = xi 1 *ki -' taking the + or - sign according as eiI > 0
1 i-i

or < 0; k. = 2 ; e. a - x. ; and if e /0, z. is an integer such that
z. - 1 Z.

21 < eil<2 '.
If desired, we can represent the x. 'S in the form yi " 2i used in the "optimal"

division procedure. In this way, we generate without division a sequence of integers

Y]' Yz, Y3 which converges to 2- .jai.

In the appendix it is shown that at least 1 binary bit of accuracy is attained per 2

iterations. In all examples calculated, the convergence is considerably faster.

Like the division method discussed in paragraph 4.1.5.4, this square-root

procedure can be used in a variety of forms. The following is a step-by-step outline
2

of how it can be used to approximate the square root of a given integer, a > 0, in
i

the form y . Z , where i is a nonpositive number specified by the user.

Step 1 - Convert a to TSMR and determine its sign. If az < 0, set error indi-
2

cator and terminate. If a = 0, set y = j = 0 and terminate. Otherwise, use the

table of powers of two to find an integer p such that 2p - I < a2 < 2 p. If p is odd, go

to Step 2; otherwise, go to Step 2a.

Step 2- Set jn = p - n and compare i with in" If i < Jmin' set error in-

dicator and terminate. Otherwise, set u = p n- max (i, u),
x = 2

q - j - I Go to Step 3.

Step Za - Set j 2 - n and compare i with j.n If i < , set error di-
mn2 min min

cator and terminate. Otherwise, set u = [p], j = max (i, u), q = p/2, and

X = 2 Go to Step 3.

2-2j - x
Step 3 - Calculate e = 2 a _ x and convert e to TSMR. If e = 0, go to Step 5;

otherwise, change the sign of e, if necessary, to obtain lel and find an integer z such

that 2 z " 1 < e I < 2Z. Calculate w z - q - I + 2j - i. Ifw > 0, go to Step 4;

otherwise, go to Step 5.

Step 4 - Calculate u = n and set v = min (u, j - i). Replace x by
2v -q 1+ j+vtaighe+ox2 z, taqingteor- sign according as e > 0 or e < 0. De-

crease j b, v and go to Step 3.
j-

Step 5 -Set y = 2 x, j = i, and terminate. The error will be less than 2

4-23

2Example: Let us take a = 627,323, i = -11, andn= 22. Then, inStep 2we get

Jmin -i2; i,v = 1 and q = 10. Hence, our first approximation is 2048 • 2 "1. The

results of the successive iterations are:

Iteration I Iteration 2 Iteration 3

x 2048 x 3072 x 6400

j =-1 j =-2 j =-3

e -1,685,012 e = 599,984 e = -811,328

z 21 z 20 z 20

w =19 w =16 w 14

u v= I u=v= 1 u=v= 1

Iteration 4 Iteration 5 Iteration 6

x -12,672 x =202,760 x =405,524

j= -4 j =-8 j= -9

e 15,104 e = 622,528 e = -754,064

z 14 z 20 z 20

w=6 w=4 w=2

u =v= 4 u= v uV1

Iteration 7

x = 811,046

j = -10

e = 227,932

z =18

w = -2

Since j > i in Iteration 7, Step 5 alters the answer to 1,622,092 2

To better illustrate the convergence in this example, we have constructed the

following table in which the error is measured by (x 2) - a .

Iteration x x (x Error

1 2048 -1 1024 1,048,576 +421,253

2 3072 -2 768 589,824 - 37,499

3 6400 -3 800 640,000 + 12,677

4 12,762 -4 797.625 636,205.64 + 8,882.64

5 202,760 -8 792.030125 627,311.68 - 11.32

4-24

Iteration x j x • 2J2 (x ' 2J)2 Error

6 405,524 -9 792.0390625 627,325.88 +2.88

7 811,046 -10 792.0371093 627,322.78 -0.22

l,622,092 -11 " "1"

A preliminary calculation of the number of modular arithmetic operations re-

quired to complete the above procedure was compared with the number of operations

required to achieve the same accuracy with the Newton-Raphson method. The re-

sults indicated that the above method required less than one-third the amount of

calculation required by Newton-Raphson method.

A brief investigation was made into whether or not the above square-root procedure

can be extended to permit extraction of "higher" roots, but the results were not en-

couraging enough to warrant further study.

4. 1. 7 Floating-Point Operations

An obvious extension of the basic idea behind the division procedure given in

paragraph 4. 1.5.4 - that is, representing the fraction, a/b, in the formx. 2, wherexis

in "residue" form and j is an integer < 0, carried in a special register - is "floating-

point" arithmetic, in which operations such as addition, subtraction, multiplication,

etc are performed in numbers in the form x 2 23 given above. All that is necessary

is to remove the restriction that j be nonpositive and the result is a greatly in-

creased machine range which gives modular arithmetic much more flexibility and

power in performing complex calculations. However, this increased computing

power comes at the cost of more complex - and hence, slower - addition, subtraction,

and similar operations. This increased complexity can be kept to a minimum by

requiring that the floating-point operands be expressed in a certain form, commonly

called "normalized" form.

In the following, we shall say that any nonzero number given in the form x ' 2i is

"normalized" if 2 m 1 < lxI < 2 m , where m is an integer defined by

2m < jM_- < Zm +1 (A normalized "zero" will be represented by 0. 0.) The

choice of this criterion is somewhat arbitrary; the principal advantage is that it min-

imizes the amount of scaling necessary to prevent overflow in the "modular" parts

of floating-point addition, subtraction, and multiplication. Another possible criterion
n-l n

for normalization might require that n < lxi < 2 , where n is an integer such that
<M/2 < 2 n+ This criterion gives a maximum number of significant digits in

every operation but requires considerably more complicated addition and multiplica-

tion routines than the chosen criterion.

4-25

We shall now describe the detailed operation of each of a set of floating-point

operations which assume that all operands (except where specifically stated otherwise)

are normalized. These operations will make free use of a stored table of powers of

two, the "nearest integer" variation of the division procedure, and the variation of

the square root procedure given in paragraph 4. 1.6 above. For the present, we

assume that the exponent, j, must remain between *h, where h is some arbitrary

bound, and that means are provided for detecting "overflow" (j > h) and "underflow"

(j < - h). We also assume h > n - m.

4. 1.7. 1 Fixed to Floating-Point Conversion

This operation is essentially a "normalize" operation. Given a in modular form,

we seek x and j such that x is normalized and a = x . 2 j .

Step 1 - Convert a to TSMR and determine sign. If a = 0, set x = j = 0 and termi-

nate; otherwise, set sign (x) = sign (a). Change signs of the TSMR coefficients of a,

if necessary, so as to obtain the coefficients of lxi . Use the table of powers of two

to find an integer p such that 2 p - I al < Zp . Go to Step 2, 3, or 4 according as

p<m, p=rn, orp>m.

Step Z - Let lx = lal 2 m -, j = p - m, and terminate.

Step 3 - Let lxi = lal, j = 0, and terminate.

Step 4 - Let b = 2p " m and perform "nearest integer" division of lal by b. Set

IxI equal to the result, j = p - m, and terminate. Note that since we assumed

h > n - m, the exponent, j, cannot "overflow" nor "underflow" in the above operations.

4. 1.7. Z Floating to Fixed-Point Conversion

Given x . 2j we wish to find the residues of a such that a S x • Zj (mod M) if j > 0

and such that a is the "nearest integer" to x - Z if j < 0.

Step 1 - Determine the sign of j. If j > 0, set a = x - 2j , performing the multi-

plication in "modular" fashion, and terminate. Otherwise, go to Step 2.

Step 2 - Let b = 2-i and perform "nearest integer" division of x by b. Set a equal

to the result and terminate.

Note that, if desired, an optional overflow detection could be performed during

Step 1 to ascertain if Ix • 2J > M/2. The overflow detection method given in para-

graph 4.1.2. 2 would suffice.

4.1.7.3 Floating-Point Magnitude Comparisonj k
Given a = x • 2i and b = y 2 in normalized form, we wish to determine the

larger of a and b.

4-26

Step I - Convert x and y to TSMR and determine the sign of each. If a and b are

nonzero and sign (a) = sign (b), go to Step 2. Otherwise, if both a and b are nonzero,

then a > b, or a < b according as sign (a) = + or sign (a) = -. If either oi a or b is

zero, say b, then a > b, a = b, or a < b according as sign (a) - +, a = 0, or sign (a)

; -. Terminate.

Step 2 - Compare j and k. If j = k, go to Step 3. Otherwise, a > b if either j > k

and sign (a) = + or j < k and sign (a) = -. Otherwise, a < b. Terminate.

Step 3 - Compare the TSMR coefficients of x and y in the usual manner to determine

the greater of x andy. Then a > b, a = b, or a < b according as x > y, x = y, or

x < y. Terminate.

Note that sign detection is the same in both fixed and floating-point since sign (a)

= sign (x) in the above.

4.1.7.4 Floating-Point Add and Subtract

Given a = x - 2-Jand b = y Zk , we wish to calculate c z 2 i such that

c = a *b.

Step I - Compare j and k. If j = k, go to Step 4; otherwise, compare r = Ij - kI

and m. If r > m, go to Step 2; otherwise go to Step 3.

Step 2 - If addition, set c = a (i.e., z = x and i = j) or z = b according as j > k or

j < k. If subtraction, set c = a or c = -b according as j > k or j < k. Terminate.

rStep 3 - If j < k, do 3a; otherwise, do 3b. 3a - Set w = y • 2 , t j and v = x *w.
rGo to Step 5. 3b -Set w = x ' 2 , t = k and v = w *y. Go to Step 5.

Step 4 - Set w = x *y, andt = j, go to Step 5.

Step 5 - Convert w to TSMR and determine the sign of w. If w = 0, set i - 0 and

terminate; otherwise, set sign (z) = sign (w) and find p such that 2 p - 1 < Iwi < 2 p .

Go to Step 6, 7 or 8 according as p < m, p = m, or p > m.

Step 6 - Set IzI = Iw I m
-2 , i = t + m - p, and terminate, turning on underflow

indicator if i underflows.

Step 7 - Set izI = I w1, i = t, and terminate.

Step 8 - Set i = t + p - m, turning on overflow indicator and terminating if

necessary. Set u = 2p m and use "nearest integer" division to divide w by u. Let

I zI equal the result and terminate.

4. 1.7.5 Floating-Point Multiply
kGivena= x •Z2-Jand b = y • 2 , we wish to calculate cz. 2i such that c = ab.

4-27

Step 1 - Calculate t = j + k. If It I > IhI, set overflow indicator and terminate.

Otherwise, calculate w = xy and convert w to TSMR. If w = 0, set z = i - 0 and

terminate. Use the table of powers of two to find an integer p such than 2p
-I

< Iw[< Zp . Set i = t + p - m, turning on overflow indicator and terminating if t over-

flows. If no overflow occurs, go to Step 2.

Step 2 - Set b = 2
p - m and use "nearest integer" division to divide w by b. Set z

equal to the result and terminate.

4. 1.7.6 Floating-Point Square-Root
j k 2

Given a = x 2, >0, we wish to findb =y 2>0 such thatb = a. We assume

for convenience that m is odd; if m is even, minor modifications must be made in

Step 1.

Step 1 - Test j to see whether it is odd or even. If even, let w = x, s = 0, and

t = j and go to Step 2; if odd, let w= Zx, s = 1, t = j - 1, and go to Step 2.

Step 2 - Use the square-root procedure to find Specify i = s 2 m Set y

equal to the "modular" portion of the result if it is nonzero and set k = t/2 + i;

otherwise, set y = k = 0. Terminate.

If the square-root procedure referred to in Step 2 sets an error indicator, then a 2 < 0.

4. 1. 7. 7 Floating-Point Divide

Givena = x 2 2i andb = y 2 2k, we wish to find c = z 2 2i such that c = a/b.

Step 1 - Convert a and b to TSMR and determine the signs of both. If b = 0, set

error indicator and terminate. If a = 0, set z = i = 0 and terminate. Otherwise, go

to Step 2.

Step 2 - Set sign (z) = + if a and b have the same sign, and set sign (z) = -

otherwise. Compare laI and lb1. If lIal < Ib, set t = m; otherwise, set t =m - 1

Set s = max (t. m - n - 1), r = 2s , and go to Step 3.

Step 3 - Calculate e = 2- aI - lb I r and convert e to TSMR. If e = 0, go to Step

6; otherwise, find z such that Zz- I < lei <2 z . Calculatew=z -m+ 1+s -t. Go

to Step 4, 5, or 6 according as w > 0, w = 0, or w < 0.

Step 4 - Calculate u = z - n - 1 and set v = max (s - t, v). Replace r by
v z-m+v

2 r L2 , taking the + or - sign according as e > 0 or e < 0. Decrease s by

v and go to Step 3.
2s - t zs - t + I

Step 5 - Replace r by r • t and set s = t. Calculate e' = e • , con-

vert e to TSMR, and obtain I e'l . Compare lel and Ibl . If Jel > IbI , set Izi

= r *1 taking the + or - sign according as e' > 0 or e' < 0; if le'l < lb 1, set I z = r.

Go to Step 7.

4-28

Step 6 - Set IzI = r 2 s-t and s = t. Go to Step 7.

Step 7 - Set i = j - k + s and terminate.
2Example: To illustrate the above operations, let us then solve x - 4x - 7 = 0 for

its greater root, 2 + 4.T = 5. 3166 that is, we will use "floating-point" arithmetic to
-b +/b 4 Zc

evaluate the expression a . As in previous examples, we assume n = 22

and M/2 = 4,849,845. Hence, m = 11.

Operations 1, 2, and 3 - Convert 2a, Zc, and b to "floating-point.

Za = 2 = 2048 2 2 - 10

2c = -14 = -1792 • 2-7

b = -4 = -2048 • 2 - 9

Operation 4 - Multiply 2a • 2c = (2048 2 1) (-1792 2 -7). Following the steps

of paragraph 4. 1.7.6 above, we have t = -17, w = 3,670,016, p 22, i = -6, which

gives 4ac = -179Z Z - 6.

2 -92Operation 5 - Calculate b = (-2048 2) . Proceeding as in Operation 4, we

have t = -18, w = 4, 194,304, p = 22, i = -7. Hence, b z = 2048 • Z- 7 .

Operation 6 - Subtract 4ac from b i.e., b -4ac = (2048 -2- 7 (-1792 2- 6

Using paragraph 4. 1.7.5 above gives r = 1, w -1792 2 -3584, v = 2048

+ 3584 = 5632, t = -7, i = -5. The result is b -4ac = 1408 2 5

Operation 7 - Find the positive square root of b z -4ac = 1408 2 2 - 5 . From para-

graph 4. 1.7. 8 above, we have w 2816, t = -6, i = -5. The square root of w is

1698 " 2b-; therefore, -4ac = 1698 • 2.

Operation 8 - Add -b andb 2 -4ac = (2048 - 2-) + (1698 • 2-8). The procedure
I

in paragraph 4. 1.7.5 above gives r = 1, w = 1698 2 2 = 3396, t = -9, v = 2048-7

+ 3396 = 5444, i = -7. The re~a Lis 1361 • 2 .
/2 - 7 - 10Operation 9 - Divide -b +Jb -4ac = (1361 ' 2) by 2a = 2048 - . Paragraph

4.1.7.7 above gives t = 11, s = -11, r = 2048. Theanswer is 1361 • 2 -8. Hence,

x = 1361 • 2 - 8 = 5 • 3164.

4-29

4.2 PROBLEM APPLICATIONS

In this paragraph we consider several significant problems which are often solved

on computers. Our purpose is to determine any particular advantage or difficulties

in solving these problems in modular arithmetic. In general, where the method

usually used to solve a problem encounters difficulties in its adaptation to modular

arithmetic, we have tried to find a new approach to the solution which is based on

the specific properties of residue number systems.

4.2. 1 The Laplace Equation

The first problem considered is that of solving the Laplace equation subject to

prescribed boundary values by the method of nets (or finite differences). In this

method, each interior point is unknown and has four neighboring values and each

boundary point is known, Initial values are assigned to the interior points as the

best guess which can be made. A new value is then calculated for each interior point

which constitutes a second approximation to the solution. These values are reached

by adding the former values of the four nearest neighbors together and dividing by 4.

This process is continued to produce successively closer approximations to the

solution.

Since it is necessary in modular arithmetic to work only with integers, a slight

adaptation is needed in this method. The boundary values are assumed to be given

as fractions and can be converted into integers by appropriate shifts, amounting to

a change of variable. Once the boundary values are integers, the chosen initial

values of the interior points can be integers. All values are then translated into

modular numbers. From this point, the only difference in the modular procedure

over the non-modular is that after adding together the four neighboring points to

produce a new approximation, division by four is not performed. Instead, the

boundary values are multiplied by 4 after each new approximation. After the modular

values are translated to binary form, they are right shifted two places for each suc-

cessive approximation calculated. A final shift takes place to compensate for the

change of variable introduced initially.

A hand calculation of the boundary value problem on a 3 x 3 grid was carried out,

but the conclusion was that results of any value in determining rates of convergence,

etc., could only be carried out by computer simulation. However, because the use

of modular arithmetic presents no peculiar difficulties or departures from those

usually encountered in solving the Laplace equation on digital computers, no simula-

tion was attempted.

4-31

4. 2. 2 Linear Differential Equations

As a second problem, we consider the solution of linear differential equations.

In particular, we shall analyze a typical differential equation to see what sort of

overflow and roundoff problems occur in its solution. In order to handle noninteger

quantities, we shall replace the dependent variable with the ratio of two integer var-

iables; therefore, two recursion relations must be used. The equation to be analyzed

is:

o = tx +---I 0 <t < I. (25)
dt 2-t'

Let the step size be 1/q, and solve iteratively using the first two terms of the Taylor

series expansion for x (n/q + l/q); namely,

x x + I -n x1
n+] n q (n 2 -)*

where

x = x (nq).n

Replace x by the ratio of yn to z The recursion formuli for these are
n n n

Yn + I = (q + n) (2q - n) yn + q zn, (26)

z = q2 (2q - n) z , 0 < n < q - 1.

If X0 = 0, y o 0. We may choose zo = l/q and actually start the recursion with

Y, = I and = Zq. The magnitude of the final result is dismaying, even for small

q, for

3 (n + 1) q3 n + 1()
Zn+ >qI >qz =q ()

For q = 10, zl 0 > 1028.

Clearly, to obtain useful results, we must have some sort of control of overflow.

Monitoring the output and recognizing that discontinuities occur where overflow occurs

might be sufficient but this approach has not yet been pursued in detail. Another

approach is to scale down both yn and zn throughout the solution process so as to

leave their ratio substantially unchanged. The frequency of scaling required will

depend on the number range, M, and the step size, l/q. Since the solution of the

differential equations is positive, the number range can be regarded as (0, M). To

prevent overflow of yn + 1 or z n + 1 ' restrict yn and zn as follows:

4-32

Yn + 1 (q 2 + n) (2q - n) Yn + q2 Zn <M (28)

2 (9
z =q (2q - n) zn <M. (29)

From equation 28, 2 (q + 1) yn + zn < M/q 2 will ensure that yn + I <M. From

3equation 29, z < M/q , a constant, will ensure that z 1 < M. The inequality,nn l

Y n < M (q - 1)3
2 (q + I) q

a constant, and the constraint on z are therefore sufficient conditions for
n.

+ 1 < M. These two checks can be made at the end of each iteration, and the nec-

essary scaling can be effected by using the technique of paragraph 4. 1. 3 of this

report. Scaling by a factor m may introduce an error as large as

max flIm 1', 1 Z . m }

for least positive residues, or

m Yn mmax a 2z - m z 2z - m
n n n

for least absolute value residues. From these error estimates, it appears that

least absolute value residues are preferable.

It can be shown that an error at step p of the recursion propagates to result at

step n in an error

n-I
e e (I +-1 2

j=p q

Hence, the truncation error and roundoff error for a particular step are given by

E 2 (n) qz + 2n + 2 + Zon-n 2
+=g-n(30)

2n 4 2q (2q -n)

and

3
E n) q--- 3,

r 3
m -q

where the truncation error is taken as the second derivative term of the Taylor

series.

The total accumulated errors due respectively to truncation and round-off at each

step are

4-33

t 4 2 2?' (31)
n-OL2n Zq (q- n) J -n n-

3 q-1 q-1Ir(l±~L)

m - q j=n j=n n

and are bounded by

< q ______ 1_____

Ft I1 qI 3 q 4q q 2 (q +) (Zq+) 2)

E < e 3 2 + -/ T q er r q - e 3q
4

m -q 3q

The above bound for the effect of roundoff error is based on the assumption that

this error is always maximum and of the same sign. Assuming a uniform distribu-

tion of roundoff error, it is easy to show that the rms error is 1/.of that given

above.

The following table shows the values of the error bounds for various values of q

and m. Notice that the largest contribution to the overall root-square error comes

from he "truncation error. A higher order integration method might bring the two

error contributions closer together and reduce the total error.

Truncation Roundoff 2 2

Steps Range Bound Bound T + R

q m T R

10 104 0.526 0.306 0.691

10 i09 1.813(10) - 2 9. 24(10) 3 2.03(10)-2

2 10 - 2 -4 -10 10 1. 813(10) 9.24(10) 1. 81(10)

103 1013 1.830110) - 3 2. 60(10) 3 3.18(10) - 3

103 1014 1.830(10) - 3 2.60(10)
4 1.85(10)

3

10 4 10 17 1. 830110) 4 8.22.11) - 4 8.42(10) 4

10 4 1018 1. 830(10) 4 8. 22(10) 5 2.01(10)
- 4

10 4 1019 1.830(10)
4 8.22(10)6 1.84(10) - 4

4-34

4. 2. 3 Complex Arithmetic

An interesting feature of modular arithmetic is that it lends itself well to working

with complex (Gaussian) integers, a + bi, where a and b are ordinary integers and

i = /T. This fact may be useful in solving eigenvalue problems, where we often

must compute with matrices of complex numbers.

To reduce a complex number (mod p), we reduce both a and b (mod p). Thus, for

example, 19 - 11 i 4 + 4i a-1 -i (mod 5). So long as we restrict ourselves to the

operations of addition and multiplication it is clear that the corresponding equations

(mod p) are also valid, and give the real and imaginary parts (mod p) of the result.

However, it is also true that division can be carried out (in the same sense as with

real integers) when the quotient is an integer (or in a Gaussian elimination), pro-

vided we work with moduli p which are primes and satisfy p = -1 (mod 4); i.e., such

primes as 3, 7, 11, 19, 23. The reason for this restriction is that the

Gaussian integers (mod p) are a field (system in which division is possible) if and

only if p - -I (mod 4).

The proof of this is based on the well-known theorem from the theory of numbers

that -I is a quadratic residue of p if p M 1 (mod 4), and a quadratic nonresidue if

p _= -1 (mod 4). Suppose we consider the number a + bi where a and b are taken

(mod p), and not both zero; i. e. , a + bi 10 (mod p). The condition that an inverse

element, call it x + iy, exist, is that (a + bi) (x + yi) _ 1 (mod p) or,

a x - by - 1 (33)

and

b x + a y 0 (mod p).
2 b2

These congruences have a solution if and only if their determinant a + b 2 0
2 2 Z 2

(mod p). If now p - -1 (mod 4) then a + b t 0 mod p, for otherwise -a =b is a

quadratic residue which contradicts the above theorem. On the other hand, if p 1

(mod 4), a 2 + b 2 = 0 (mod p) has a solution with a / 0 (in fact, it is easily shown that

p itself is a sum of two squares), and a + bi has no inverse (mod p).

Example:

2 + i .(2 + i) (3 + 2i) 3 (mod7).
3- Zi 13 13

This enables us to extend all of the linear algebra algorithms of modular arithme-

tic to the complex domain. To carry out the complex operations (mod p) either a

separate subroutine can be included in the (mod p) unit, or else the whole closed

4-35

2 rz 1
system of p elements (the so-called Galois Field GF LP 2 can be mechanized as a

basic unit, which does ordinary (i.e. real) mod p arithmetic as a subroutine.

Let us give a simple numerical example.

Calculate the determinant

2+i 5 -i

l+i 1-i 2

1 -3i -10+i

(mod 7) by Gaussian elimination.

Note (Z+i) - 1 = -1 -3i. Multiplying the first row successively by (1+i) (1+3i) and by

(1+3i) and adding successively to the second and third rows gives

2+i 5 -l1

O 4-i 4+Zi

0 -2-Zi 0

Finally, (4-i)- 1 - 1-Zi; hence, to complete the triangularization multiply the second

row by (1+Zi) (-2-Zi) Z+i and add to the third row, obtaining

Z+i 5 -i

o 4-i 4+Zi

o 0 -1+i

Hence, the value of the determinant is (Z+i) (4-i) (-l+i) =_ 3 (mod 7). In other words,

the determinant has the form, a + bi, where a F 3 and b S 0 (mod 7).

4. 2. 4 Polynomial Evaluation

It has been pointed out that redundancy inherent in various numerical calculations

takes the form of periodicity in modular arithmetic, thus reducing the amount of

computation required. In the following, it is shown how the evaluation of a polyno-

mial for all integers, x, such that 0 < x - M = the product of the rnoduli, is reduced

to the evaluation of the same polynomial for only mn values, where mn is the largest

modulus in the system.

The most general polynomial, P(x), which takes on integer values for all integer

values of x may be written

PWx 7- a i , (34)

i=0

where

i!

4-36

a binomial coefficient, and the a. are integers. A formula for the period of such a1

polynomial modulo m appeared in a recent issue of the American Mathematical

Monthly (reference 4).

In practice, however, one is more likely to be concerned with a polynomial which

has integer coefficients. If, furthermore, all moduli are primes, p, the problem is

considerably simplified. Then p is a period of the polynomial modulo p, so that

either the polynomial is constant modulo p or has fundamental period p.

Again, in practice, it doesn't appear worthwhile to determine whether the poly-

nomial is constant or not for any particular modulus since the evaluation may proceed

simultaneously in all moduli. The number of evaluation cycles required is then

exactly equal to the largest modulus. In modular notation, the value of the polyno-

mial for any integer x in 0 <x <m m... m , where mi ... m are the (prime)

moduli is [P(xl), P(x2) . P(Xn) I where x in modular notation is (xl, x xn)

In the evaluation of the polynomial, Fermat's Little Theorem in the form

x p = x modulo p

may be used to reduce the polynomial module p to one of degree (p-i) or lower. In

this case, the polynomial is constant modulo p if and only if it is of degree 0.

4. 2. 5 Linear Algebra

4. 2. 5. 1 The Adjoint of a Quasi-Singular Matrix

It is known (see reference 5) that, in the case of a singular matrix, A, the process

of Gaussian elimination will lead to a row of zeros. The rows of the adjoint of A are

proportional to the corresponding row x = (x i , x 2 '. ... Xn) of the bookkeeping

matrix.

Clearly, the transpose of A is also singular, so that Gaussian elimination per-

formed upon it will also lead to a row of zeros. By transposing the corresponding

row y = (y, Y2 , yn) of the bookkeeping matrix, one obtains a column vector.

The columns of the adjoint of A are proportional to this column vector. (Alterna-

tively, one may perform elementary column operations on A and on a bookkeeping

matrix to obtain a column of zeros and the corresponding column of the bookkeeping

matrix.)

The adjoint of A is, except for a scalar factor, the product of the column and row
vectors; that is, the ijth element of the adjoint of A is The constant c can be

evaluated most directly as follows. Let ys and xr be the first nonzero elements of

and x, respectively. Then, cys = (-1) r + Sa ', where a ' is the value of thers rs

4-37

minor determinant of the rs t h element of A. The above equation is actually a con-

gruence modulo p which can- be solved for c since YsXr / 0 (mod p). The evaluation

of the determinant a ' (mod p) is accomplished in the usual manner for nonquasi-r s

singular matrices. If a..,- 0 (mod p), then c F 0 and the adjoint of A is identicallyrs

zero modulo p.

4. 2. 5. 2 Gauss Elimination for Singular Matrices

In paragraph 4.2.5. 1, a modular method for finding the adjoint modulo p of a

matrix whose determinant is congruent to 0 mod p (a quasi-singular matrix) was

described. This method has the disadvantage of requiring significantly different

processing of the matrix mod p compared to the processing relative to the otner

moduli. Furthermore, in the related but simpler problem of solving a set of linear

equations, the more time consuming operation of finding the adjoint of the coefficient

matrix was required as a preliminary, rather than direct solution of the system of

equations. A new method of finding the adjoint of a singular matrix has been dis-

covered; this is simply the addition of another operation, applicable to singular (or

quasi-singular) matrices only, to the operations used in Gauss elimination. With

this operation, Gauss elimination may also be used in solving all systems of linear

equations. This method will now be described

To avoid confusion, one standard variant of the Gauss elimination process will be

described and will hereafter be considered as the Gauss process. The extension

works equally well with other variants; obvious minor modifications to the proof of

its validity are required.

To invert the n x n matrix A the process is as follows. The n x n identity, I, is

adjoined to A to form an n x 2n matrix (A, I). The nonsingular operations of row

interchanges and elementary row operations (multiplication of a row by a nonzero

constant and addition of a multiple of a row to another row) are performed to bring

A first to upper triangular form (the forward course) and then to complete the trans-

formation of A to the identity, I, (the return course). At this point, I in the aug-
-1

mented matrix has been transformed to A and the determinant of A is the recipro-

cal of the product of the factors used as row multipliers times (- 1)r , where r is the

number of row interchanges performed. The adjoint of A is given by A,'O = A I A-1

The forward course may always be completed; when A is singular, one or more
th

rows of the transform of A will be 0. The return course, which starts with the n

row of A, and uses only elementary row operations (no row interchanges) can proceed

4-38

only to the point where the addition of an (infinite) multiple of a zero row to other

rows is required.

For definiteness, it is assumed that by this point, all diagonal elements of the

transform of A are either 0 or 1. If not, the rows of the augmented matrix are each

multiplied by the reciprocal of the corresponding nonzero diagonal element. The

product, b, of the reciprocals of all the row multipliers and (-l) r is required. At

this point then, the matrix (A, I) has been transformed to (T, S) where

det S = 1/b / 0 (35)

and T has at least one row of zeros. Since the same operations which transformed

A to T transformed I to S,

SA = T. (36)

The same process is followed to solve a set of linear equations except that the

column y is adjoined to A to form the n x (n + 1) matrix (A, y). This process breaks

down at the same point.

4. 2.5. 3 Extended Gauss Elimination

The extension is simply the addition of the following operation, E, to those previ-
th

ously used. When a row of zeros, say the i , is encountered in the transform of A,

the diagonal element of that row is changed to 1, and in the augmented portion of the

matrix all other rows are changed to 0, the i t h row being unchanged.

This operation, E, treats the portions T and S or T and Sy of the transformed

augmented matrix dissimilarily. Let D. be the n x n matrix with a I in the (i, i)1

position and 0 elsewhere. Then E is simply:

T-T + D.
1

S -D. S

or

(Sy) - Di (Sy)

Thereafter the ordinary Gauss process proceeds. Since all diagonal elements

used in the Gauss process are 1, only the operation of addition of a multiple of one

row to another is required. This operation has determinant 1.

If another 0 diagonal element, say the j th, is encountered, the operation E is

repeated. After a finite number of such operations (at most n) the augmented matrix

of the inversion problem is in the form (I, W). Then,

bW=A.

4-39

For the problem of the solution of the set of linear equations, W is not displayed

explicity; the augmented portion of the matrix is (Wy) and b (Wy) is the required

solution.

Before demonstrating the validity of this method, some illustrative examples will

be presented. Consider the problems of finding the adjoint of A and of solving

Ax E y modulo 7. (Recall that we will actually findhe integer vector (detA)x.)

1 2 6 I 1 • x, + 2x, + 6x 3 = 1
A =Z 1 3 2 x 1 + 1 2 + 3x 3 = z

3 4 5 3 x 1 + 4 " 2 + 5x 3 = 2

det A = 21 E 0 mod 7.

02 6 1)

(A, I)= 1 3 0 1 0 (A. y)= 2 1 3

4 5 0 0 14 5

Subtracting mod 7 twice (3 times) the first row from the second (third) row, one

obtains:

126 10 0 (1 26 1>

K 4 5 5 1 0 0 4 5 0

<0 5 1 4 0 1 0 5 1 6

To complete the forward course, the second row is multiplied by 2, whose reciprocal

is 4 and five times the resulting row subtracted from the third.

1 2 61 00\ 1 261)

(T, S) = 0 1 3 3 2 0) (T, Sy)=O 1 3 2

0 0 3 4 1/b4 0 0 6/

Now the operation E is applied: the 0 in the third row, third column is changed to a

1 and the elements r-f the first two rows of the fourth and fifth and sixth columns if

any, are changed to 0.

2600 0\ (1 2 60

1 3 0 0 0 1 3 0

0 1 3 4 1 0 16

The return course is now completed in the usual way; three times the last row is

subtracted from the second row, six times the last row subtracted from the first

row and twice the new second row from the new first row.

4-40

10 00 0 0N 1 00 0
(l,w)= 010524) I, Wy): 0103)

0 1 3 4 0 1 016

Multiplying by b 4

A =4W=6 1 2 4(Wy) 5

5 4 3

checking, the nonmodular adjoint of A is

-7 14 0)-1-13 9

5 -31
which is congruent mod 7 to A above, and the solution to the set of equations is

Zl x 1 = 21 2 1 x 9 21 x3 = 3

which are congruent mod 7 to 0, 5, and 3 as determined above.

It remains to prove that inclusion of the operation E in the above procedure leads

to A

From equation 36 it follows that

AS =T.

Multiplying on the right by S and using equation 35 yields

A =bT S.

Since the it h row of T is 0, the cofactor of each element of T not in the i t h row is 0

so that T differs from 0 only in the i t h column. But then T S depends only on the

i row of S so that S may be replaced by D. S which leaves the i t h row of S unchanged;

thus,

A = b T (D i S).

(This relation verifies the known result that the rows of A are proportional to the
*th
1 row of S.)

Since D. S differs from 0 only in the i t h w, the product T (D 5) depends only on
th th

the i column of T ; this column is independent of the i row of T so that T may be

replaced by T + D.. Hence1

A =b(T + D) (D i S) (37)

4-41

If T + D. is nonsingular, Gauss elimination on the augmented matrix (T + D.,
1 1

D. S) can be completed leading to a matrix (I, W). Clearly the transformation of
1-I

* + D. to I is accomplished by (T + D.) 1 since T + D. is a triangular matrix with
I I I

r;agonal elements 1, its determinant is 1 so that

(T + Di)l = (T + Di)

and

W = (T + D.) (Di S).

Substituting in equation 37,

A =bW

as required.

A proof for the case T + D. singular, may be had for example by induction on the
1

number of 0 diagonal elements of T. It may be noted that if 2 or more rows of the
ti' th

transform of A are simultan~eously 0, say the i and j , then S may be replaced by

D. D. S = 0.
1 J

Since any linear transformation of 0 yields 0, the known result,

A =0

when A is multiply degenerate, is obtained.

4. 2. 5. 4 Computation of the Characteristic Polynomial

As a general rule, all linear algebra computations which are "rational"; i. e. , do

not involve solution of higher degree equations etc, extend without difficulty to MA.

Next to inversion of a matrix, computation of the characteristic polynomial A (X) =

det (A - XI) ranks high in importance. This succeeds very elegantly by transforma-

tion to Frobenius normal form which we explain briefly (reference 6).

Let us denote by X: i- j the row operation in which X times the i
th row is added to

.th ..

the j row. The operation X: i j is realized as

left multiplication by the matrix L 1 . 1

where X is in the (j, i) position. Similarly we let X: i C j denote the addition of X

times the i
th column to the jth column. This operation is realized as right multipli-

cation by the matrix which is a unit matrix, except for X in the (i, j) position. (It is

4-42

assumed throughout that i / j.) Now, the operation inverse to X: i R j is clearly -X:
R.

i R j. Representing this as a matrix, and multiplying by this inverse matrix on the

right thus represents the operation -X: j i. We thus arrive at the following impor-

tant conclusion: The combined effect of adding X times the ith row to the j row,th thte rw

followed by addition of -X times the jth column to the ith column is a similarity trans-

formation. Hence clearly we can perform any consecutive number of row operations

on a matrix, and then "balance" these with the appropriate column operations (care

must be taken with the order) so that the characteristic polynomial remains un-

changed. A second important similarity transformation is obvious: multiply the

.th th -I
1 row by X, then the i column by X- . And a third, even simpler one, is: inter

change rows i and j, then interchange columns i and j. The transformation to

Frobenius normal form is based on bringing the given matrix, by the three basic

similarity operations just described, to the form

c1 c2 .. c cn

n - n

1 0 0 0

0 1 0 0

0 0 ... 1 0

of which the characteristic polynomial is readily seen to be A (X) (-1) n

n n-i

(X _ X ... - c). (The factor (-1) n may be ignored; thus the coefficients
1 n

of the characteristic polynomial are just the numbers -c..) The reduction to the

form above by an algorithm now to be described can always be carried out

unless we reach a form with a certain pattern of zeroes in which case calculation of

the characteristic polynomial is thrown back upon the same problem for matrices of

lower order. Let us illustrate the method numerically. Let

3 1 -4 2]

2 3 -2 -4I
A = [2 -3 -3

It is required to compute A (X). Clearly for any prime, p, the coefficients of A (X)

are =- (mod p) to the coefficients of the polynomial obtained when the elements of A

are replaced by residues (mod p). Let us choose p = 5. Then the transformations are

as follows:

4-43

23 3 1 23 2 1 -- 3 2
A---

24 2 4 3 2 1 2

-1 4 2- 1 1 2- - Z 1 2

Here a single arrow denotes a single (row or column) transformation, a double ar-

row denotes that the matching (column or row) transformation has been performed.

Thus any matrix following a double arrow is similar to A. We will employ the same

convention for a series of row (or column) transformations performed simultane-

ously. Notice that we have a 1 in the (4, 3) position. This is the first step and now

we are in a position to transform all other elements in row 4 to 0. Performing suc-

cessively -1 : 3 -1, -2 : 3 2, -Z : 3 -4 gives

and now performing successively 1 1 R 3, 2 : 2 3, 2 4 R3 gives

4 1

01 2

-0 0 1 0

We now bring a 1 into the (3, 2) position (it is already there in the present case) and

use it to obtain zeroes in the remaining positions of row 3. These operations re-

quire no comment:

41 1

01 00

00 10

at this point we cannot proceed owing to the zero in position (Z, 1). Moreover, this

zero is "irreducible, " there is no nonzero element standing in its row to the left of

it (otherwise we could bring that nonzero element in its place by successive row

interchange, and column interchange without disturbing rows 3 and 4). This is the

case when the algorithm stops, and we write

a(X) = (4 - X) det (A1 - Xl)

4 -44

where

A 1 0:

is in Frobenius normal form, and we have the result

A(x) (X -4) (X - x 2 X - 4)

3 2 2 2
A(X) (X + 1) (X -X X +) (X + 1) (X -1) (mod 5)

In point of fact A (X) = (X + 1) (X - 1) as direct calculation shows. The reader will

find it instructive to work the same example for other prime moduli.

To determine the number of primes required, we renuire the following informa-

tion: Let b. denote positive numbers, and
1

(X + b) ... (X + bn) = + s1 + s X +... Sn (38)

sk ()tk (39)

Thus, s k is the sum of the products of distinct b. taken k at a time, and tk is the1

average of these products. According to an old theorem of Maclaurin,

I I
t > .2 n (40)
t1 > >t ..z1- - n

(For a proof see Hardy et al, Inequalities, Cambridge, 1934, p. 52.) A second fact

which we require from the theory of matrices is the inequality

n 1n

1 i=l j=l [aij 2 (41)

where X. represent the eigenvalues of the matrix 11aij. Now, in the characteristic

polynomial A (X), the coefficient ck of X n k is the sum of products of the X. taken

k at a time. Now, in equation 38, let b.= I. I Then I c < s. Hence, since tk<

t we have

k

s < () '1(42)
n

4-45

Hence

ck < n-k (n)(x i)k

k k
k k

< -k (n) 1~ 2 2

by Schwarz inequality. Hence finally

k k
- 2(n) (' n l an j 22(3

by equation 41. This gives us bounds on the coefficients of the characteristic poly-

nomial. A simpler but more crude bound is obtained by replacing every a.. by

a -max Iaiil This gives

k

Ickl_ nZ (n)ak (44)

Notice that when k = n, ck = c = det A, and equation 44 gives the Hadamard deter-n
minant inequality.

For example, suppose a = 10, m =5. Then the upper bounds for Icl 1 cz

Ic3 , c4 1 , Ic5 l given by equation 44 are respectively about 112; 5000; 112,000;

1, 250, 000; and 5, 590, 000. Since the upper bound given by equation 44 in most cases
2

attains its largest value for k = n (for instance, this is the case whenever a > n) it

is generally sufficient in computing the characteristic polynomial to use a set of

primes sufficient for the computation of the determinant.

4-46

4.3 SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

In the above paragraphs of this section, we have shown how two-sided mixed-

radix notation can be used to determine the sign of a number or to compare the mag-

nitude of two numbers given in residue form, and we have given a method for convert-

ing an integer from residue notation to the two-sided mixed radix form. We have

derived overflow detection methods fo-r addition and multiplication, which in the su-

perior version of the latter algorithm makes use of a stored table of powers of two.

This table is also used to implement a division procedure which seems to be the best

devised for modular arithmetic.

This division procedure, while slow compared to addition, subtraction, and mul-

tiplication on a modular arithmetic computer, is comparable in speed to the division

operation on small, conventional computers. Hence, any conventional fixed-point

program can be adapted, with no significant modifications, for modular arithmetic

execution. Addition, subtraction and multiplication will be considerably faster on

the MA computer, division will be about the same in speed, while sign determination

is considerably slower.

The division procedure can be extended to permit an essentially complete reper-

toire of floating-point operations. An extension of the idea of the division procedure

yields a square root extraction algorithm.

We have also shown how modular arithmetic can be used to solve various commonlv

occurring problems such as Laplace's equation and linear differential equations. In

the area of linear algebra, we have devised a new method for finding the adjoint of a

matrix whose determinant is zero with respect to a modulus, a problem peculiar to

modular arithmetic, and have applied this method to the solution of a set of linear

equations. Finally, we have shown how the special properties of the modular arith-

metic number system can be used to advantage in evaluating polynomials at many

points and performing complex arithmetic. From these applications as well as the

methods for extracting square roots and finding the adjoint of a matrix, it i. apparent

that it is quite often advantageous to utilize the special properties of the modular

arithmetic number system in solving a problem, rather than merely to adapt ;he

"standard methods" used on binary digital computers to the residue number system.

In the course of the investigations described above, we have found new problem

areas which we feei are worthy of investigation in future numerical analysis work on

modular arithmetic. Some of these problem areas are described below.

4-47

4. 3. 1 Scaling by Continued Fractions

It is well known (see reference 7) that a rational fraction, a/b, can be represented

as a (finite) continued fraction and that this representation can be obtained through

a repeated application of the Euclidean algorithm. This requires one "nearest-

integer' division, one multiplication, and one qubtraction per iteration, as is illus-

trated in the example below. The numerators arid denominators of the successive

convergents can be calculated through the use of integer recursion formulas. An

investigation should be conducted as to the feasibility of scaling-down a fraction with

a large numerato:r and/or denominator - such as occur in the solution of the linear

differential equation in paragraph 4. 2. 2 - by approximating that fraction by one of

the convergents in its continued fraction representation. The advantage of such a

technique lies in the excellence of the approximation of the fraction by one of its

convergents, considering the small size of the numerator and denominator of the

approximation. The principal disadvantage is that the repeated application of the

Euclidean algorithm requires time-consuming "nearest integer" divisions.

For example, we can expand 105/38 as a continued fraction as follows:

105 = 2(38) + 29

38 = 1(29) + 9

29 = 3(9) + 2

9 = 4(2) + 1

2 = 2(l).

Typically, the second line is obtained by [38/29] 1 1; 38 - 1(29) = 9.

If we label the successive 'quotients" q 1' q 2 . we have the result:

s = 0 1 2 3 4 5
qs = 1 1 3 4 2

p = 1 2 3 11 47 105
s

Q = 0 1 1 4 17 38

where, for

s> 1,

P and Qs are generated by the recursion formulas

s qs Ps-I Ps-2'

4-48

and

Qs =
qsQs-i +

Qs-2"

Taking the qs'S in succession, we have the continued fraction representation of

105/38:

2+ + 1

+ 1 1

3+ II

4+ 1
2

Furthermore, we can approximate 105/38 by stopping at any value of s < 5 and using

any of the 'convergents" P s/Q s; it can be shown that the error in such an approxi-

mation is

< i/QsQs- *

Hence, we could use for example,

P3 /Q3 = 11/4

as an approximation of 105/38.

4. 3. 2 Cyclic Orientation

Given the distinct integers a, b, and c, we say that the cycle (a, b, c) is positive

if a<b< candis negative if b<a< cor a< c<b. Ifa, b, and care now repre-

sented in residue form by a. s, b. Is and c. 's, respectively, we can perform certain
1 1 1

operations on the rows and columns of the matrix

a a ." an

b1 b2 b n

c c . c n

which preserve the orientation of the cycle (a, b, c). It is understood that the opera-

tions in the k t h column are performed (mod mk). For instance, if the i t h colun-.-,

of the matrix consists entirely of zeros, we can divide - in the sense of solving

linear congruences - all other elements of the matrix by the ith mrodulus and delete

the ith column entirely. We thereby obtain a reduced set of residues which preserve

the orientation of the cycle (a, b, c). We can also add or subtract a I to all elenments

of a row, which will either make two rows identical - in which case we will know

whether (a, b, c) was positive or negative - or preserve the orientation of the cycle.

4-49

Clearly, when successive additions will not make Z rows identical, these additions

can be performed in one step. Thus, we can either determine the orientation of

(a, b, c) by making two rows of the matrix become equal, or we can successively

delete columns of the matrix until we have only one column remaining. In the

latter case, the ordering of the residues in the last column is the same as the orien-

tation of (a, b, c). Thus, if we know initially that a < c, we can use this procedure

to obtain information about the magnitude of an "unknown" b.

As an example, let

m m 2 = 3, m 3 = 5,

and

m4 = 7 be the nioduli.

We wish to test whether 18 < (1, 2, 4, 0) < 87; that is, whether or not the cycle

(a, b, c) is positive,

where

a= (0, 0, 3, 4,),

b = (1, Z, 4, 0),

and

c = (1, 0, 2, 3),

using "positive residues. " The procedure is as follows:

0 0 3 4 0 0 0 3 4 0 0 4 2
add I to rows divide by 2

1 2 4 0 0 0 0 1 and delete 0 0 42 and3

1 0 2 3 0 1 3 4 lstcolumn 2 4 2

No 0 4 2 ; 3 3 D' 4 4
add I to divide by 3 add I to add I to
row 3 0 0 4 and delete 0 6 0 6row 1 row 1

0 0 3 1st0 1 0 1

010
0 5 divide by 5 1

0 6 and delete 4
1 st coluimn0 1 3

Since (1, 4, 3) is a negative cycle, we conclude that (a, b, c) is negative; that is,

b is not between 18 and 87. (Actually, b is 119.)

4-50

It should be noted that this technique is actually a generalization of the technique

given in paragraph 4. 1. 1 for converting a number from residue form to two-sided

mixed radix notation. ln fact, if we let a = 0 and c = M/2, then the above technique

will convert b to two-sided mixed radix.

Since there is a possibility that this technique will result in an improved magni-

tude determination algorithm and a good probability that it can be used for ordering

large sets of numbers (an important operation in many data processing applications),

further study of cycles and their application is recommended.

4. 3. 3 Table Look-up Procedures Using Mixed Radix Notation

A study of efficient table look-up procedures for modular arithmetic is recom-

mended since several important algorithms require table look-up.

Since the mixed radix notation provides a useful "ordering" of the integers in a

modular arithmetic system, it is natural to use some of the special properties of the

mixed radix coefficients to speed the look-up procedure. For example, in using the

table of powers of two in the division, square-root, and floating point procedures

described above, the "entry point" in the table could be made to depend on the index

and value of the highest order non-zero mixed radix coefficient of the number whose

"binary logarithm" is being sought. If all but the two "low-order" mixed radix co-

efficients of an integer were 0, say, then we would begin our table look-up near the

bottom of the table.

This study is related to the study of modular addressing techniques discussed in

paragraph 6. 5. 2, and the two studies should be performed simultaneously.

4-51

5. SIMULATION OF MODULAR ARITHMETIC COMPUTERS
ON THE IBM 7090

5.1 GENERAL

When simulating one computer (the source computer) on another (the host com-

puter), it is customary to represent selected special registers (such as the accumu-

lator and quotient registers) of the source computer by certain specific memory

locations or registers of the host computer. Moreover, specific types of memories

of the source computer (such as operand memory and instruction memory) are

represented by blocks of memory of comparable size on the host machine. Finally,

of course, each instruction or order code on the source computer is represented by

an appropriate set of instructions on the host computer which accomplishes "the same"

results. The results on the host computer are judged to be "the same" as those on

the source computer if the operands are operated upon in such a way as to produce

the same contents for the appropriate simulated registers as would be produced in

the corresponding registers of the source computer 'ter actual execution of the

instruction. A simulation model containing these basic features is considered to be

the classical computer simulation model.

5.2 DESCRIPTION

The model developed for the simulation of modular arithmetic (MA) computers on

the IBM 7090 is not the classical one, although this may become desirable at some

future date. Basically, the MA Simulator departs from the classical model in that

no specific instruction repertoire is assumed for the MA computer. Rather, the

simulation is of functions instead of instructions.

The MA Simulator can simulate any modular arithmetic computer configuration

of from 2 to 12 mohli (mi) where all moduli are les.s than 64 and at least two moduli

are less than 32. The reasons for these restrictions will be discussed below;

however, they are not too severe since the first 12 primes produce a range, M, in

excess of 10 11, which is deemed ample for most feasibility investigations. The MA

computer being simulated may have the following functionE:

a. Addition

b. Subtraction

5-1

c. Multiplication

d. Division (solution of a linear congruence)

e. Division (iteratively by the method of paragraph 4. 1. 5.4)

f. Equal, not-equal compare

g. Compare magnitude

h. Sign determination

i. Conversion (decimal-to-modular)

j. Conversion (modular-to-decimal)

k. Conversion (modular -to-two-sided mixed radix)

1. Input (magnetic tape)

m. Output (magnetic tape, cards, or on-line printer)

For input/output purposes, the range, CAPM = rl m., is considered to extend
CAPM CAPM

over the interval (- + C), approximately. To be sure, an MA computer
2 2

would also have some other things like an instruction memory, data memory, and

perhaps, index registers. But these are not the items being studied by the Model

I Simulator. Effectively, only residue class arithmetic is being simulated.

Any applications problem involving only the functions listed above can be run on

the available Model 1 Simulator. In fact, the test problems used to check out the

simulator involved matrix addition, subtraction, and multiplication. The applica-

tions program is written in the FORTRAN language and, therefore, all of the

FORTRAN input/output features are available to the MA programmer. Moreover,

the applications program is compiled by the FORTRAN compiler and the simulator is

run on the IBM 7090 as a normal FORTRAN operation.

5.3 METHOD

The primary purpose of the simulator was to assist in the investigation and eval-

uation of various numerical techniques. It was felt that this purpose would be

greatly facilitated by the capability to write the applications programs in a problem

oriented language with all of the capabilities of FORTRAN. After considering nu-

merous possibilities, an ingenious method was found which permits the MA applica-

tions programs to be written in FORTRAN and compiled by the existing standard

FORTRAN compiler.

The simulator was completed with a minimum of effort by taking advantage of the

method FORTRAN uses to implement double-precision arithmetic. In the IBM 7090

FORTRAN II language, the appearance of the letter D) in card column one of an

5-2

arithmetic statement causes it to be compiled as a double-precision arithmetic state-

ment. Among other things this means that the compiler will

a. allocate two words of storage to each double-precision variable

b. set up linkages to one of several unique subrnutines which implement the

basic operations of addition, subtraction, multiplication, and division.

Modular arithmetic can be forced into the framework of double-precision arithmetic

by replacing the subroutines for the double-precision arithmetic operations with

subroutines for their modular counterparts and by restricting the number and size

of the moduli to allow packing the entire n-tuplet into two words. In this way, the

existing FORTRAN compiler can process modular arithmetic programs. The

replacement of the basic arithmetic subroutines by their modular counterparts does

not involve any modification to FORTRAN since this capability is available in the

standard FORTRAN system.

Any configuration of moduli which can be packed into 70 bits could have been used.

However, since it was unlikely that the need would arise for moduli of magnitude

greater than 64, it was expedient to standardize on a fixed format of six bits for

each modulus. Since the sign bits of the two words cannot easily be used as magnitude

bits, two of the moduli must be restricted to five bits.

The finctions listed in (d) through (k) are effected through the use of FAP-coded

subroutines which are "CALLable" in the applications program by standard FORTRAN

CALL statements. In converting from decimal to modular form, the decimal number

is divided by each of the moduli and the remainders are stored. The modular-to-

decimal conversion routine makes use of the Chinese Remainder Theorem.

With the addition of each new feature to the simulator, greater and greater care

had to be exercised to ensure compatibility with the earlier features. For example,

prior to the addition of the features using the two-sided mixed radix representation,

a least nonnegative residue representation was required. However, no conflicts

arose through the use of both representations.

5.4 RESULTS

In general, work on the Modular Arithmetic Simulator program proceeded in a

fashion typical of many research and development endeavors. That is, the course of

the development of the simulator was dictated by the results of other investigations.

Quite early in the development of the simulator (when the only method programmed

for division was by solution of linear congruences), a matrix inversion application

5-3

program was successfully run on the simulator. A sample of the actual results from

the program is included as figures 5-1, 5-2, and 5-3. The 10 by 10 matrix to be

inverted and its modular inverse are shown in figures 5-1 and 5-2 respectively. To

facilitate verifying the results, the program exhibits the product of the matrix and

its computed inverse, as shown in figure 5-3. For this sample, an MA computer

having a range of -681, 891 to +681, 891 as produced by the four moduli 29, 31, 37,

and 41 was simulated. All of the numbers in the output must be interpreted modulo

the product of the moduli (1, 363, 783). For example, the element in the last row

and last column of figure 5-2 represents the decimal number 2/4 which is -681, 891.

That is, -681, 891 is a solution to the linear congruence 4x - 2 (mod 1,363,783).

Work on the implementation of one method for computing the adjoint of quasi-

singular matrices was abandoned when a much simpler method was discovered. An

applications program employing this improved method was prepared for the simula-

tor and some results from the program appear in figures 5-4 and 5-5. Figure 5-4a

is a 3 by 3 matrix whose determinant is -6. Using as moduli the numbers 3, 5, and

7, the program yields the matrix in figure 5-4a as the adjoint. To facilitate verify-

ing the results, the program exhibits the product of the matrix and its computed ad-

joint as shown in figure 5-4c. Figures 5-5a, b, and c show the corresponding re-

sults from the program for a larger matrix for which the inverse is known explic-

itly. The numbers Z, 3, 13, 17, 29, and 41 were used as moduli.

In keeping with the intent that the simulator be used as a dynamic tool, the last

applications program prepared for it was designed to answer empirically the question

of number of bits per iteration of the Divide algorithm. The unique thing about this

particular applications program is that it was not wholly modular. That is, the

program may be thought of as having been run on two computers - a modular arith-

metic computer in conjunction with a conventional computer. First, the conventional

part of the program is used to randomly choose two numbers which are used by the

modular part of the program as dividend and divisor in the Division algorithm dis-

cussed in paragraph 4. 1. 5. 4 of this report. Following the division, another

"conventional" part of the program is used to compute all of the quantities (other

than the quotient) listed in the sample of the output shown in figure 5-6. The pro-

gram repeats this process any desired number of times. From figure 5-6 it can be

seen that after 500 divisions the average number of bits per iteration is 2.85. Be-

cause of space limitations, only the last page of the results is included hergin.

5-4

NR= 10 NC = 10

10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

9.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

8.0 8.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

7.0 7.0 7.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

6.0 6.0 6.0 6.0 6.0 5,0 4.0 3.0 2.0 1.0

5.0 5.0 5.0 5.0 5.0 5.0 4.0 3.0 2.0 1.0

4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 Z.0 1.0

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 1.0

2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0

4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Figure 5-1. The A Matrix

THE INVERSE MATRIX (10 X 10)

1.0 -1.0 0. 0. 0. 0. 0. 0. 0. 0.

-1.0 2.0 -1.0 0. 0. 0. 0. 0. 0. 0.

0. -1.0 2.0 -1.0 0. 0. 0. 0. 0. 0.

0. 0. -1.0 2.0 -1.0 0. 0. 0. 0. 0.

0. 0. 0. -1.0 2.0 -i.0 0. 0. 0. 0.

0. 0. 0. 0. -1.0 2.0 -1.0 0. 0. 0.

0. 0. 0. 0. 0. -1.0 2.0 -1.0 0. 0.

0. 0. 0. 0. 0. 0. -1.0 2.0 -1.0 0.

0. 0. 0. 0. 0. 0. 0. -1.0 2.0 -340946.0

0. 0. 0. 0. 0. 0. 0. 0. -1.0 -681891.0

Figure 5-2. The Inverse Matrix

5-5

1L0 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 1.0 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.0 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 1.0 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1.0 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 1.0 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 1.0 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 1.0 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 1.0 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0

FINISHED

Figure 5-3. Product of A and A Inverse

NR = 3 NC = 3

The A Matrix The Adjoint Matrix Product of A and
(3 x 3) A Adjoint

1.0 1.0 0. -6.0 -1.0 1.0 -6.0 0. 0.

1.0 -1.0 1.0 0. 1.0 -1.0 o. -6.0 o.

1.0 5.0 1.0 6.0 -4.0 -2.0 0. 0. -6.0

FINISHED

a. b. c.

Figure 5-4. Results of Improved Method of Computing The

Adjoint of Quasi-Singular Matrices

5-6

THE A MATRIX

a NR=7NC =7

3.0 1.0 1.0 1.0 .1.0 1.0

1.0 3.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 3.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 3.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 3.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 3.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 3.0

b THE ADJOINT MATRIX (7 X 7)

256.0 -32.0 -32.0 -32.0 -32.0 -32.0 -32.0

-32.0 256.0 -32.0 -32.0 -32.0 -32.0 -32.0

-32.0 -32.0 256.0 -32.0 -32.0 -32.0 -32.0

-32.0 -32.0 -32.0 256.0 -3Z. 0 -32.0 -32.0

-32.0 -32.0 -32.0 -32.0 256.0 -32.0 -32.0

-32.0 -32.0 -32.0 -32.0 -32.0 256.0 -32.0

-32.0 -32.0 -32.0 -32.0 -32.0 -32.0 256.0

c PRODUCT OF A AND A ADJOINT

576.0 0. 0. 0. 0. 0. 0.

0. 576.0 0. 0. 0. 0. 0.

0. 0. 576.0 0. 0. 0. 0.

0. 0. 0. 576.0 0. 0. 0.

0. 0. 0. 0. 576.0 0. 0.

0. 0. 0. 0. 0. 576.0 0.

0. 0. 0. 0. 0. 0. 576.0

FINISHED

Figure 5-5. Results of Improved Method of Computing
The Adjoint of Quasi-Singular Matrices

(Inverse Known Explicitly)

5-7

DIVIDEND DIVISOR QUOTIENT J K D ALPHA MEAN

482 243186. 612294. 832930, -21 10 24 2.40 2.84

483 204951. 199553. 538470. -19 7 22 3.14 2.84

484 440759. 85629. 674668. -17 8 21 2.63 2.84

485 789684. 499616. 828680. -19 10 23 2.30 2.84

486 720839. 773454. 977246. -20 8 22 2.75 2.84

487 528507. 473383. 585340. -19 7 22 3. 14 2.84

488 231992. 102234. 594864. -18 6 22 3.67 2.84

489 226482. 843953. 562789. -21 9 20 2.22 2.84

490 314317. 781404. 843572. -21 8 25 3.13 2.84

491 546160. 493487. 580249. -19 13 21 1.62 2.84

492 845038. 741395. 597580. -19 7 21 3.00 2.84

493 278702 582430. 1003520. -21 4 21 5.25 2.84

494 145388. 50191. 759351. -18 9 22 2.44 2.84

495 232847. 587848. 830683. -21 12 22 1.83 2.84

496 309945. 308665. 526462. -19 4 22 5.50 2.85

497 137488. 494436. 583156. -21 8 22 2.75 2.85

498 638371. 743763. 899992. -20 7 22 3.14 2.85

499 9624. 375516. 859954. -25 9 21 2.33 2.85

500 317891. 199362. 835999. -19 8 25 3.13 2.85

FINISHED

Figure 5-6. Sample Output

5-8

t, SYSTEMS AND LOGIC DESIGN

6. 1 INTRODUCTION

The range of immediate applications for modular arithmetic computers appears to

be limited to something less than the full spectrum of applications to which conven-

tional digital computers are applied. This statement assumes that no dramatic im-

provement will be made in present modular arithmetic algorithms, specifically in

sign and magnitude determinations, division, and floating-point operations.

The potential application area for modular digital computers is that presently

occupied by conventional fixed-point computers used for the solution of scientific

problems (as opposed to data processing). In addition, it seems likely that modular

computers will be able to solve special problems which heretofore have been impos-

sible to solve because of the large numbers of fast multiplications required. For

example, it is entirely feasible and practical to implement with semiconductor de-

vices a 10-mc modular multiplier with any reasonable word length (roughly, 60 bits

or less).

Because of our recent advances in modular adder and multiplier mechanizations,

it is now feasible and economical to implement both parallel and serial modular

fixed-point computers for both small and large machine ranges. Thus, while further

studies will no doubt yield further economies in implementation, the present status

of modular arithmetic algorithms and implementation techniques is such that modular

arithmetic now warrants careful consideration for application to most fixed-point

computer problems. The systems and logic design sections to follow are of an ade-

quately general nature to be applied to the design of almost any modular computer.

6. 2 MODULAR COMPUTER SYSTEMS ORGANIZATION

For most applications, a modular computer would be identical to an ordinary

fixed-point digital computer in its basic organization. The modular system to be

described below, if carried to a detailed design for a particular application, would

provide capabilities conceptually similar to those of a fixed-point computer. In the

remainder of this section, the major units of the computer are described functionally;

in the following section, the arithmetic unit and the control unit are described in more

detail.

6.2. 1 Input Unit

This unit will contain various input equipment as required, depending on the com-

puter application. All incoming quantities can be stored in binary registers. These

registers will store fixed radix quantities only, which will be routed to the modular

arithmetic unit for conversion to residue code, after which the residues will be

stored in memory. For all practical purposes the input unit will be organized pre-

cisely in some conventional form and need not be described further here.

6. 2. 2 Memory Unit

The storage requirements of the modular computer will not differ greatly from

those of fixed radix computers. In almost all memory retrievals, the memory will

be instructed to retrieve some one set of residues; i. e. , one operand, needed for the

comnuter operation specified by control. Therefore, it seems natural to organize

the memory word in the following fashion. The residues will be stored in least ab-

solute value residue form for each of the system moduli mi, 2 ... i mn. Each

residue will be coded in binary notation, with modulus m, requiring b1 bits, where

b is the first integer > log2 mi. The memory word which stores quantity

x (x, x 2 .. x), x = xj mwill contain residue x, in bit positions 1, 2,
1

... , b residue x in bit positions b1 + 1, b1 + 2, b + b2; and similarly for

the other residues. The leftmost bit for each modulus will represent the sign bit.

An estimate of storage efficiency as compared to a binary computer memory

can be obtained from an example. Consider a conventional computer with number
8 27range of 108 2 . Neglecting sign and parity bits, such a computer would require

27-bit memory registers. A modular computer with a similar number range and

for the set of moduli 31, 32, 51, 53, and 55, would require, in order of increasing

moduli, 5 + 5 + 6 + 6 + 6 = 28 bits for each memory register. Thus for this set of

system moduli, the modular computer would require about 4 percent more storage

capacity than the fixed radix computer for the same machine range. Obviously,

storage efficiency is dependent upon the efficiency for each modulus. Proper choice

of moduli for any system; i. e. , a choice weighing minimum adder-multiplier hard-

ware against maximum storage efficiency, will never require more than 10 percent

additional memory for the modular machine.

6. 2. 3 Control Unit

This unit of the modular computer will contain the clock and the necessary con-

trol logic to direct and coordinate the various functions of the machine.

6-2

Paragraph 6. 3. 2 gives details of a "typical" control unit design. One possible

feature of a modular control unit not treated in paragraph 6. 3. 2 is that of a special

control requirement encountered in matrix inversions or solutions of sets of linear

equations. If a modular computer is required to solve these problems, then all the

moduli must be primes in order that solutions to the linear congruences which re-

sult will always exist. Also, control logic must be provided to facilitate the inter-

changing in 2 memory locations of the residues for a particular modulus, while leav-

ing the remainders of these memory words unaltered. This is because elements of

a matrix can be congruent to 0 modulo m., but, not congruent to 0 modulo m.. At1 J
some point in the matrix inversion procedures, elements congruent to 0 mod m.

have to be interchanged for nonzero mod m. elements.

6. 2. 4 Arithmetic Unit

Given a modular computer with n moduli, the arithmetic unit of the machine will

consist of n modular adders, n modular multipliers, an accumulator with residues

organized in the same fashion as in a memory register, and some routing logic. As

will be described below, the adders and multipliers are the heart of the computer,

functioning for input conversion, all arithmetic operations, and output conversion.

In the present design, the computer is organized as a single-address machine in

which, of any two modular quantities to be operated on, one is always taken from the

accumulator and the other from some memory register (or also from the accumulator

in special cases), with the result routed back to the accumulator. These generalities

will be elaborated upon in paragraph 6. 3. 1.

6. 2. 5 Output Unit

If the modular-to-fixed radix conversion procedure described in paragraph 4. 1. 4

is used, the only hardware required in the output unit for conversion will be a

register or registers for holding fixed radix quantities arriving from the accumulator

or memory after a conversion has been made. If the method of conversion of para-

graph 4. 1.4 is too slow for some special high output rate application, a faster method

can be obtained by solving the Chinese Remainder Theorem problem in the fashion

outlined below.

The Chinese Remainder Theorem states that,

given

x _m x, x 2 . n rod (mi. m2 . ran

6-3

where the moduli are pairwise prime, then

x - Wc 1xI + C2x z + ... + Cnx (mod M),

where the c. are constants which mav be calculated in advance and stored to be re-1

trieved when needed. Previous solutions have assumed a requirement for fixed

radix multiplication to obtain the products c.x. and fixed radix addition to sum these
1 1

products. Further, to obtain rapid solutions, parallel addition and parallel multi-

plication were required. The hardware for convex sion was thus comparable to that

of an entire arithmetic unit of a fixed radix parallel machine. This approach

obviously forfeits much of the advantage of modular arithmetic.

A better solution to this problem follows simply from the observation that the

quantities c x. Jo not have to be obtaineo by multiplication. Since there are only m.

possible values of the quantity cix., (i. e., 0, ic (m-)c.), it is entirely1 1 1m-~ ii setrl

feasible to store all possible c x. for each m. in a read-only memory and reduce the

problem to a series of memory retrievals and additions. Consider, for example, a

modular computer employing as moduli the primes 2 through 31, giving a machine
11number range of about 10 . The suggested approach requires the storage of 150

predetermined constants of around 40 bits each, or a total requirement of 6000 bits.

A parallel adder is still required, but the hardware requirement is much less than

that when parallel rnuliplication is provided. Further, the solution will be obtained

many times faster, depending on the number of moduli used.

In summary, the reconversion process requires a small read-only memory, a

parallel adder, and the necessary control logic. Assuming the parallel adder adds

in one clock time, the reconversion for a system using n moduli will require either

n memory cycles or n clock times, whichever is greater.

6.3 ARITHMETIC AND CONTROL UNITS

The typical modular arithmetic and control units to be described in this paragraph

assume a reasonable minimum instruction set. Thus, for example, the divide oper-

ation is performed with a subroutine, as is the modular-to-fixed-radix conversion

operation.

6. 3. 1 Arithmetic Unit

The arithmetic unit with the proper control can execute the following instructions:

I. Addition - ADD

2. Subtraction - SUB

3. Multiplication - MUL

6-4

4. Convert Modular to TSMR - CON

5. Compare Magnitude of x and y - COM

6. Transfer on x > y - TRA

7. Convert Modular to TSMR, determine sign, transfer if sign is positive -

DES

8. Load the accumulator - LOD

9. Store - STO

10. Convert binary input to modular - INP

ii. Output - OUT

12. Circular Shift - CIR

13. Logical AND - AND

14. Logical OR - LOR

A description of how each of the above operations is accomplished will now be given.

1. Addition

Addition (modular, of course) in the arithmetic unit is straightforward. Given a

number x = (x x, x) in the accumulator and the address of a number

y = (Yl, Y2 . . Yn) in memory and instruction from control to add z = x + y; (1)

y is retrieved from memory, (Z) x and y are fed to the inputs of the adders, and (3)

z is routed back and stored in the accumulator.

2. Subtraction

Since the operands are stored in LAVR code, to subtract x - y, complement the

sign bit of each (yI, Y2 . yn) and add as above.

3. Multiplication

Given a number x = (x l , x 2 '. ... Xn) in the accumulator and the address of a

number y = (yl, Y2 yn) in memory, and instruction from control to multiply

x • y = z; (1) y is retrieved from memory, (2) x and y are fed to the inputs of the

multipliers, and (3) z is stored in the accumulator.

4. Modular to TSMR Conversion

Given a number x m (x,, x 2 xn) in least absolute value residue notation for

which TSMR conversion is desired; (1) the subtractions x, - x are performed for alli I

i > 1, (2) the modular inverses d 1 i, (i = 2. n), are retrieved from memory, and

(3) the products (x i - x1). dli (mod mi), are formed for all i > 1. The result of

these three steps is the elimination of modulus mI; a similar set of operations re-

moves modulus m 2 , etc, until only the one modulus, mn, remains. The TSMR

number is then

6-5

x= a I +a 2 (mI) + a 3 (m 1 m 2) +... +a (m 1 m 2 ... in 1).

The time required for a TSMR conversion is a function of the number of moduli;

namely, if there are n moduli in the residue system, the time required is 2(n - 1)

clock times, allowing one clock time each for (1) a memory retrieval and a sub-

traction and (2) a multiplication. This time can be reduced to (n-1) clock times, if

multiplication by the constants d.. is accomplished through decoding binary residues

to a one-of-m is hot code, wire-twisting to give the proper multiplication by d..,
13

and encoding to binary residues. This is, in general, relatively expensive of

hardware, requiring, for example, on the order of 500 logic gates for system moduli

32, 51, 53, and 55.

5. Compare Magnitude of x and y

Two operands x and y to be compared must be available in TSMR form. If the

signs of their rightmost TSMR coefficients a and b differ, then the signs of x andn n

y differ and the comparison is completed. If a and b are of like sign, they aren n

compared algebraically. If both are positive, then the larger of the two belongs to

the larger number; if both are negative, the lesser negative belongs to the larger

number. If an = bn , the same test is applied to an_1 and b 1' etc, until the com-

parison is completed.

6. Transfer Program on x > y

This is a conventional transfer instruction.

7. Convert Modular to TSMR, determine sign, transfer on positive

This instruction is an obvious extension of instruction (4). Further details will

be given in paragraph 6. 3. 2.

8. Load the Accumulator

This instruction loads the accumulator with the contents of the memory location

specified by the address field of the instruction.

9. Store

The contents of the accumulator are stored in the specified memory location.

10. Convert Binary Input to Modular

The iterative conversion procedure from binary notation to least absolute

value residue form will be reviewed briefly here and then discussed in terms of how

it is implemented in the computer.

6-6

Given a number x in binary code, let

2k 2k-iZ,
x =2 a +2 a + "" + 2 a k -l + ak'

where

a = 1, a. = 0 or I for i 0.
0 1

Define the recurrence
x =i+1 x i + ai+ I .

Then,

xk = x and it follows that

xk = x (mod mji)

for all system moduli m.. The discussion below concerns what is necessary for ob-

taining the residue of x for each modulus; conversion will of course proceed simul-

taneously for each modulus.

We must calculate xk by going through k iterations, where k is one less than the

binary bits required to represent the number. Each iteration is a left shift by one

bit and an addition of either 1 or 0 to the shifted quantity. Alternatively, we can add

to the quantity x. the quantity ai+1 and then multiply by 2, so conversion can be
1

accomplished in 2k clock times. These operations are of course all modular and

with respect to each modulus. Then, given a number in a register in the input unit

to be converted, control will specify a set of k iterations as described above. If the

input quantities are 24 bit numbers and a i-mc clock is used, conversion will require

48 microseconds per 24-bit word.

The possibility exists of course for reducing the number of iterations and conse-

quently the conversion time by expressing input quantities in higher radix form; e.g.

16. If hexad'ecimal code were used, there would be only one-fourth the iterations

required in the binary-to-modular operation just described. Since the implementat;on

methods of Section 7 make it economically feasible to mechanize adders and mult"

pliers for large moduli, it is quite possible that each modulus will be greater ' .1

16. If this is the case, then the binary k-bit number can be operated on as.a h,

decimal (k/4)-digit number. For k = 24 and a i-mc clock, the hexadecimal con-

version requires 12 microseconds. A minor complication arises if moduli less than

33 are used with LAVR, since the four -bit characters (hexadecimal digits) are not

6-7

automatically the correct LAVR residues for those moduli. Obvious solutions are

(1) make all moduli greater than 32, (2) use octal digits, which are correct LAVR

residues for these moduli, and (3) use supplementary hardware to convert to correct

LAVR residues for these moduli.

11. Output

The contents of the accumulator are placed in an output register. Accumulator

contents can be either modular, mixed radix, or fixed radix, so the form of the

output will depend on the program.

12, 13, 14. Left Circular Shift, Logical AND, Logical OR

These instructions have been included primarily for the modular-to-fixed radix

conversion subroutine, but undoubtedly can be used elsewhere. (For example, the

AND instruction can be used to reconstruct memory words as is required for matrix

inversion.) Functionally, a CIR instruction shifts the contents of the accumulator a

specified number of bits to the left with the overflow bits shifted into the low order

bit positions. The AND instruction performs the logical AND of two words and stores

the contents in the accumulator. The LOR instruction performs the logical OR of

two words and stores the contents in the accumulator.

An example of the modular-to-fixed-radix conversion described in paragraph

4. 1. 4 will now be given.

Consider a system with moduli 2, 3, 5, 7, 11, and 13. A conversion from LAVR

to decimal notation is to be made. Let

x -0, -1, -2, -3, -5, 6 (mod 2, 3, 5, 7, 11, 13).

The problem is to convert x to decimal notation using only modular operations.

The first step is to get the residue of x modulo 10. This residue is the sum of the

first two terms of the mixed radix representation.

x= aI + a 2 (2) + a3 (2 • 5) +... +an (2 5. 3. 7 • 11).

Now,

a x 2 =0,

a 2 (x 5 - x)• d 2 5 = (-2 -0)(-2) 4

Thus,

X10 =a 1 +a 2
• 2=0+8=8

6-8

The integer, 8, is then the units digit of x in decimal notation. To obtain the tens

digit of x, subtract x 1 0 from each residue of x and divide by 10; i.e. , by moduli 2

and 5. Proceed as follows.

Let

x2 1 10 x5 1 10 x3 x10 x13 - 10
2 Z"5 2. 5 '2. 5 2 5

I +3 -2 -2 mod (2, 5, 3, 7, 11, 13)'1 5' 0' T. 5 2•5 '2 .5

Note that IN 1 2 and I NI 5 are not known. They must be obtained by applying

the mixed radix conversion to N until only the moduli 2 and 5 remain. At this point

we have

N 11 2 - 0(mod) 2 IN, 1 5 + I 0 (mod 5)

N N1l 2 = 1 1 N11 5 =2

The tens digit of x is then the sum of the first two mixed radix terms of N

a 1 = 1N 1 1 2=

a 2 =IN, 5 - I N 1 2) d 2 5 = (2-l)(3) = 3

Thus,

IN 11 10
1 + 3(2) 7

In a similar manner, the remaining decimal digits of x can be obtained. We get

x = 578.

It should be noted that the particular order in which the moduli are eliminated in

solving for the unknown residues, as for IN1I 2 and I NI 5 above, requires that

equipment be provided for converting residues modulo 10 to the correct residues

modulo the modulus from which the residue mod 10 is subtracted.

The way in which conversion from LAVR to decimal code can be programmed is

generally as follows. The number x to be converted to decimal form is converted to

TSMR form and placed in memory. The residue mod 10 is calculated in POSITIVE

RESIDUE form (i. e. , the true units digit of x) and placed in the four least significant

bit positions of the previously cleared accumulator, and then stored in -. memory

location. The number N I is calculated next and from Nil the tens digit of x or

I N i l 10. Ni1 10 is shifted to bit positions 5 through 8 of the accumulator, and the

logical AND of INl 10 and a memory word which is all zeros except for ones in bit

6-9

The integer, 8, is then the units digit of x in decimal notation. To obtain the tens

digit of x, subtract x 1 0 from each residue of x and divide by 10; i.e. , by moduli 2

and 5. Proceed as follow.-

Let

N : x 2 - x 10 x 5 -X10 x3 x10 x 13 -x10

S2 5 '2. 5 ' 2. 5 2 5

NII +3 -2 -2 mod (2, 5, 3,7, 11, 13)2 , 1 5' 0, 2. 5 2. 5 ' 2. 5

Note that IN I 2 and I N 1 5 are not known. They must be obtained by applying

the mixed radix conversion to N I until only the moduli 2 and 5 remain. At this point

we have

IN 112 -le0 (mod 2) 2 I N , 1 5 + I= 0 (mod 5)

N N 1 1 2 = 1 1N11 52
The tens digit of x is then the sum of the first two mixed radix terms of N 1 .

a I

a 2 = (5 - IN 1 2) d 2 5
= (2-1)(3) = 3

Thus,

N1 1 10 = I + 3(2) = 7

In a similar manner, the remaining decimal digits of x can be obtained. We get

x = 578.

It should be noted that the particular order in which the moduli are eliminated in

solving for the unknown residues, as for IN1I1 2 and IN, 5 above, requires that

equipment be provided for converting residues modulo 10 to the correct residues

modulo the modulus from which the residue mod 10 is subtracted.

The way in which conversion from LAVR to decimal code can be programmed is

generally as follows. The number x to be converted to decimal form is converted to

TSMR form and placed in memory. The residue mod 10 is calculated in POSITIVE

RESIDUE form (i. e. , the true units digit of x) and placed in the four least significant

bit positions of the previously cleared accumulator, and then stored in a memory

location. The number N I is calculated next and from NI the tens digit of x or

A 11.1ND of1 is shifted to bit positions 5 through 8 of the accumulator, and th .e
ogicalAND of IN 1 I0 and a memory word which is all zeros except for ones in bit

6-9

positions 5 through 8 is formed in the accumulator. Next, the logical OR of x 1 0 in

memory and IN 1I1 10 in the accumulator is formed in the accumulator. In a

similar fashion, the remaining digits of the binary coded decimal form of the number

x are generated.

6. 3. 2 Control Unit

The computer control unit was studied in such detail as seemed desirable. The

main goal was to show that those commands which were different in form in a

modular computer from their counterparts in a conventional computer could be im-

plemented without using too many components. A total component count of reason-

able accuracy was sought.

Six moduli, 2, 3, 5, 7, 11, and 13, are used to give a machine range of 30, 030.

These moduli are not necessarily those which would be used in an actual computer,

but they serve as an adequate example.

The chosen computer repertoire of commands includes those which are considered

desirable in most modular computers, but does not include commands which would

occur only according to need in a given application. The commands chosen for in-

clusion are given with their symbols below:

I. Addition - ADD

2. Subtraction - SUB

3. Multiplication - MUL

4. Conversion from modular to TSMR form - CON

5. Compare TSMR numbers for magnitude - COM

6. Transfer program of A > B - TRA

7. Convert from modular to TSMR form, determine sign, and transfer pro-

gram if sign is positive - DES

8. Load - LOD

9. Store - STO

10. Input conversion from binary to modular - INP

11. Output - OUT

12. Left Circular Shift - CIR

13. Logical AND - AND

14. Logical OR - LOR

6-10

Commands number 4, 5, 6, and 7 are interrelated. There are two major reasons

for converting from modular to TSMR form. These are to determine the sign of a

number and to compare the magnitude of two numbers. In both cases, the result will

determine whether or not a transfer of program is initiated. When the sign is to be

determined, the conversion and conditional transfer can be part of the same com-

mand. Instructions (5) and (6) are separate commands because the machine organi-

zation chosen does not provide for storing the data address and the transfer address

simultaneously.

Commands 12, 13, and 14 are provided mainly for the programming of output con-

version by the method of paragraph 4. 1.4.

The computer control unit has four registers and two counters. These are the

instruction register, the B register, the A register, the memory address register,

the instruction counter, and the cycle counter, as seen in figure 6-1. There is a

third four-bit shift counter which is part of the instruction register and a fourth two-

bit counter which is part of the memory address register.

Since the six moduli require a total of 17 bits, the typical memory data word will

be of this length. The B register which receives data from memory and the A reg-

ister which acts as the computer accumulator are examples. The instruction register

was also chosen to be 17 bits. Allowing the necessary four bit field for instructions,

this leaves a memory address field sufficient size to address 8192 memory words.

The instruction counter and the memory address register are therefore each of 13

bits. The C counter controls the general timing of the computer and has at least

four bits.

The general cycle that the computer follows is that the instruction is read from

memory into the instruction register after the instruction address is transferred

from the instruction counter into the memory address register. The data address is

then transferred from the instruction register into the memory address register and

the data word is read into the B register where it is used in the performance of the

instruction.

The add instruction, ADD, is very straightforward and is performed by sending

an add signal to all the modular adders (see figure 6-2).

The subtract command, SUB, is performed by first sending a complement signal

to all the signs of the modular numbers in the B register, and then sending an add

signal to all the adders. Multiplication, MUL, is performed by sending a multiply

6-11

F COUNTER 1

- MEMORY
n
0

0)

I

Figure 6-1. Modular Computer Organization

signal to all the modular multipliers. The results of add, subtract, or multiply

end up in the A register.

The conversion from modular to TSMR command, CON, introduces somewhat

more complexity.. It is necessary to perform successive subtractions of various

parts of the A register from other parts of the A register representing larger

6-12

sue
STEP 2 STEP I

ADD
MUL

E MOD 2 81 MOD 2
ADDER MULTIPLIER

Ai

s M

B3 B2

MOD 3 MOD 3
ADDER MULTIPLIER

A3 A2

S M

B6 B5 84

MOD 5 MOD 5
ADDER MU LT, PL I E R

s M

B9 B6 B7

N400 7 MOD 7
ADDER MULTIPLIER

A9 AB A7

s M

813 8;2 811 BID
MOD 11 MODII
ADDER MULTIPLIER

A13 A12 All ALOs M. MI
817 B16 B15 814

MOD ;3 MOD 13
ADDER g MULTIPLIER

A17 A16 A15 A14

Figure 6-2. Arithmetic Control

6-13

moduli. This means, in effect, that there is a great deal of alternate gating to the

adder inputs which receive from the B register during the command. This gating

for the mod 13 adder, which is the worst case, is shown in figure 6-3.

817 ASM £3 TIME3 A6 TIME5 A9 TIME7 A13 TIME9

TIME I

F17

BI-'7 ASM A3 TIME 3 £6 TIME5 9 TIME 7 A13 TIME 9

ASM: ADD,SUSTRACTOR MULTIPLY
CONTROL SIGNAL

F17: INPUT TO MOD 13 ADDER OR F17

MULTIPLIER, F 17 B17 IF THE
INSTRUCTION IS NOT CON OR DES.

Figure 6-3. Representative Gating for TSMR Conversion

Since some moduli require a different number of bits than others and the adder

being used in each case is that of the larger modulus, some of the adder inputs are

filled in on the complement side. The other procedure necessary for this operation

is to alternate multiplication by the various dkj with the subtractions. This means

that repeated memory access is performed during the time of the conversion com-

mand and it is necessary to provide means for variable addressing. This is done by

6-14

forming a counter out of the three least significant bits of the memory address reg-

ister. Each time a new data word is to be read from memory in the CON command,

the counter is advanced by one. Certain trivial programming restrictions are

caused as a result. In order that the counter may not overflow, it is necessary for

the programmer to choose an initial address with the three least significant bits

representing a small enough number.

The comparison command, COM, involves a chain of logic. The logic for the

modulus 13 is shown in figure 6-4. The signs of the mod 13 numbers, a and b , aren n
compared. If the sign of a , A17, is positive and the sign of b , B17, is negative,n n
A is larger than B. If the two signs are the same, then the numbers a and b aren n

compared step by step in the comparator shown in figure 6-5, starting with the most

significant bits. If a > b and both signs are positive or if b > a and both signsn n n n

are negative, then A is larger than B. If a = b , it is necessary to examine then n

signs and numbers of the next larget modulus in a similar manner. In this way, a

sufficient number of moduli are examined to determine if A is larger than B and to

set a flip-flop S if it is. As this command is comparatively expensive in hardware,

the possibility of programming it should be considered.

The command to transfer the program if A > B, TRA, is used to follow a compare

magnitude command. It examines the state of the flip-flop determined in the com-

pare command. If A > B, the address in the instruction register is placed in the

instruction counter.

The composite command, convert from modular to TSMR form, determine sign,

and transfer program if sign is positive, DES, could consist only of determine sign

since separate commands are available to perform the other functions. However,

for the sake of economizing on memory time and since the facilities used for the

separate commands are available for use in the complex command with very little

extra control, it was decided to group these functions. Figure 6-6 shows the logic

involved in determining the sign of the TSMR number. The S flip-flop is set (1) if

a , the TSMR coefficient associated with modulus 13, is not zero and its sign isn
negative, or (2) if an is zero and an-I is not zero and its sign is negative, or (3) if

the same conditions are met for any of the other moduli. If the sign is positive, the

address in the instruction register is placed in the instruction counter.

The load command, LOD, loads the A register with a word from memory. This

is done by clearing the A register, dumping a word from memory in the B register,

and adding it to the A register.

6-15

A>9

'C °>bn

~~~COMPARATOR bnn

CCOM CONTROL SIGNAL

Figure 6-4. Comparison Command Logic

The store command, STO, operates by transferring a word from the A register

to the B register while inhibiting the reading of the word in memory into B. During

the write cycle, the word in B is stored in memory.

The input conversion from binary to modular command, INP, takes a word from

the input unit in binary form and converts it into modular form in the A register.

The A register is initially cleared and the binary word is input serially, most signi-

ficant bit first. The first bit is entered into all the modular adders simultaneously

on the B register adder inputs at the least significant position. The result is then

multiplied by the number 2 located in the B register. The second most significant

bit is then added to the number in the A register. The process is repeated with

alternate additions and multiplications until all bits have been processed. The out-

put command, OUT, simply takes the contents of the A register and transfers it to

some register in the output unit where it is needed. The details will depend on the

function of the computer.

6-16



A16 
A15 

A14

D0 SEE FIGURE 6-4

Figure 6-5. Comparator

The logical And command, AND, is implemented with an 'and" j gate for each bit

position. The inputs to these gates, aside from control, are the corresponding bits

of the A and B registers. The outputs of these gates go to the A register.

The logical Or command, LOR, is implemented in a way similar to that of the

logical And except that the "and" gates are replaced by "or" gates and the control

must be applied to "and" gates on the output of the "or" gates.

The circular shift command, CIR, is implemented by making a shift register out

of the A register with each bit capable of shifting from I to 16 places to the left.

The shift is circular because the Al bit is considered to be immediately to the left

6-17



At',' Z-5 D)S

Z-I2 KIO0

a 0 A13 All

A'S 415 Al 41 A l/ l A O AS A7 AS A4 |

Figure 6-6. Sign Determination

of the Al7 bit during this command. The number of shifts is contained in a portion

of the instruction register implemented as a countdown counter. When this counter

reaches zero, the shifting stops.

The control system requires about 82 flip-flops and a carefully estimated 750

gates in addition to those in the modular adders and multipliers.

6.4 OTHER SYSTEMS STUDIES

6.4. 1 Special Memory Considerations

Since a modular multiplication is a one-pulse operation and since this operation can

be accomplished in much less time than the cycle time of the fastest core memories,

an investigation was made concerning how the problem of inadequate memory speed

6-18



might be overcome or at least alleviated. Obviously, if faster memories become

available, they can be used to particular advantage in a modular machine. Magnetic

thin film memories are the most likely candidates, but full scale memories of this

type are not likely to be available for several years. Smaller ''scratch-pad'' or

buffer thin-film memories, however, can be obtained now. Such a buffer memory

could be used to great advantage in many applications of a modular computer. For

example, a comparison of time to multiply two N 2 matrices with and without such a

buffer memory has been made. If enough fast buffer storage is available to store a

row and a column of the matrices being multiplied, then 2N memory retrievals from

the main memory are all the retrievals required to obtain the first element, first

row, of the product matrix; N retrievals are needed to obtain the second element,

first row, and N more for each of the remaining N-2 elements, first row. Thus

2N + N(N - 1) = N 2 + N retrievals are required for the first row and similarly N + N

for each additional row. The total retrievals from main memory with buffer storage

available is then

23 2
N(N +N)=N +N

Now, if each element of the matrices under multiplication must be retrieved from

the main memory each time it is used; i. e. , no buffer is available, then each of the

2N elements of the two matrices must be retrieved N times, requiring 2N 3 retrievals.

Since buffer memory cycle time should be a small fraction of that of the main

memory, this time advantage of the buffer memory is significant.

6. 4. 2 Criteria for Choice of Moduli

The choice of a set of moduli for a modular computer requires that many factor-

be taken into account. The two fundamental factors are (1) the moduli should be

pairwise relatively prime and (2) the product of the moduli must be as large as the

required machine range. In addition to these two factors, an examination of our

total research effort, i. e. , encompassing numerical analysis, systems design, and

implementation phases, has revealed eight other significant factors to be considered

when choosing a set of moduli for a parallel modular computer. These criteria will

also apply in the main for a serial-parallel or serial-by-modulus computer. The

short comments given with each of the factors should make each factor clear; in any

case, the reader may consult the appropriate paragraph of the report for further

details.

6-19



a. Maximize memory storage efficiency. Hence each modulus should be just

smaller than an integer power of 2 (one modulus can of course be a power of 2).

Paragraph 6. 2. 3.

b. All moduli must be primes if it is required that general linear congruences

be solvable. Paragraph 4. 2.

c. An integer power of 2 modulus allows a~ninimal hardware mechanization

of its addcr and multiplier. Paragraph 7. 1. 2.

d. If composite moduli; i. e., moduli which are products of primes, are used,

one of the factors of one of the composite moduli should be an integer power of 2,

and every other factor of the composite moduli should be just less than an integer

power of 2. Paragraphs 6.2. 3 and 7. 1.2.

e. A small number of large moduli gives the required machine range and

minimizes mixed radix conversion time. Paragraph 4. 1. 1 and 6. 3. 1.

f. A large number of small moduli gives the required machine range and

minimizes adder-multiplier hardware. Paragraph 7.

g. 2 or 2 and 5 (or 10) should be moduli or factors of moduli if output con-

version to radix 2 or radix 10, respectively, is required. Paragraphs 4.1.4 and

6.3. 1.

h. The machine range should be just greater than an integer power of 2 for

most rapid convergence in division. Paragraph 4. 1.5.

Some of the above factors are obviously mutually exclusive and others are parti-

ally redundant. The complete list is given to indicate that all these factors must be

considered if the proper choice of moduli for a particular application is to be made.

Thus the problem requirements will automatically exclude certain factors from

consideration and the remaining ones can be considered in terms of the detailed

problem requirements.

6.5 SUMMARY AND RECOMMENDATIONS

6. 5. 1 Systems and Logic Design Summary

In summary of the systems and logic design studies presented, the modular com-

puter which was designed has the characteristics given in table 6-1. As noted pre-

viously, the choice of machine range and system moduli was made for ease of the

design studies only. However, the addition of modulus 31 to the given set would

give a machine range of about 20 bits, which is adequate for most applications

presently under consideration. The addition of modulus 31 would cost approximately

6-20



TABLE 6-1

MODULAR ARITHMETIC COMPUTER CHARACTERISTICS

Characteristic Value

Machine range ±15,015

System moduli 2, 3, 5, 7, 11, 13

Residue coding LAVR

Mode of operation Fully parallel

Modular word length 17 bits

Arithmetic unit hardware 425 gates

Control unit hardware 750 gates, 82 FF

Type of control Synchronous, 2-phase clock

Instruction operation time, clock Add - 1 Subtract - I
cycles Multiply - 1 Divide (subroutine)

- :100

Determine sign - 10

300 logic gates and 15 flip-flops. Thus a fully parallel modular computer with a range

of ±415, 415 can be mechanized for about 1600 logic gates and 100 flip-flops using

presently available mechanization techniques.

A. comparison of the above computer with a conventional fixed point computer

should be of value. Table 6-2 gives such a comparison. The modular computer is

assumed to have the same clock rate and memory cycle time as the conventional

computer. It should be noted that both the clock rate and the memory speed can be

significantly improved using present technology.

In fairness to the Airborne Computer, it must be pointed out that this computer

has a larger instruction set and was designed to do considerable nonarithmetic data

processing, which undoubtedly makes its arithmetic and control hardware somewhat

greater. In fairness to the modular computer, it is severely memory-cycle-time

limited. It could be organized in a serial-parallel fashion to give the same add and

multiply times (3. 3 4sec) and twice the divide time (about 300 Isec) with a hardware

reduction of 200 to 300 gates.

6. 5. 2 Recommendations for Further Study

It is recommended that the following areas of systems and logic design be the

objects of further studies.

6-21



TABLE 6-2

COMPUTER COMPARISON
(Times are in Microseconds)

Characteristic Westinghouse Airborne Westinghouse Modular
Computer Arithmetic Computer

Machine range ±524,288 ±415,415

Memory cycle time 3. 3 3. 3

Clock rate 1 MC I MC

Add time 6.0 3.3

Multiply time 41 3.3

Divide time 6! ; 150 (subroutine)

Arithmetic and control 1640 1600
gates

6. 5. 2. 1 Modular Memory Addressing

An obvious way to address the core memory in a modular computer is to use the

bit positions of one (large) modulus for one address field and similarly for the

second address field. However, some of the possible states of the bits are ordinarily

nonadmissible; e.g. , 30 and 31 for modulus 29. Since core memories are now

constructed in 'blocks' which contain an integer-power-of-2 number of words, use

of the above - suggested method for modular memory addressing introduces some

complications. Preliminary investigations indicate this problem is not a serious

one, but it should be investigated in more detail.

6. 5. 2. 2 Classical Simulator

The construction of a modular arithmetic classicai simulator would make avail-

able a very useful study and design tool. Such a simulator would operate with a

modular computer instruction repertoire to solve test problems and thus evaluate

the merits of the repertoire, the algorithms used to solve the problems, etc. For

example, the exclusion of the magnitude comparison instruction (see paragraph

6. 3.2) eliminates about 150 control gates. The alternative of programming this

instruction could be evaluated on the simulator in terms of running time for test

problems. The availability of such a simulator should greatly facilitate the design-

ing of a near-optimal computer configuration for a particular problem, since it

would allow various instruction sets and machine organizations to be evaluated in

relative detail.

6-22



6. 5. 2. 3 Independence and Time Sharing

A modular computer, because of the independence between moduli of modular

operations (excluding conversions to and from fixed or mixed radix), has particular

properties which are potentially of great value. These properties are involved with

the fact that it is possible to (logically or by program) perform mod k logic on mod

m equipment provided only that m > k. If provisions are made for detecting when

a mod k unit has failed, then the mod m unit may be time-shared to allow computations

of the original accuracy to be performed at a reduced rate. This premise of course

requires that equipment be provided to facilitate the detection of failed units and the

revision of the program to the slower computing rate.

It is proposed that investigations be conducted in the above area. The properties

to be studied are uniquely modular and to our knowledge have not yet been investi-

gated. Favorable results of such studies have obvious applications, particularly in

environments where conventional repair is difficult or impossible. Perhaps one can

even design a machine which adaptively selects its moduli, based on present comput-

ing requirements and on what modular units are functioning at a given time. Cer-

tainly the premises of (I) varying machine range with problem requirements and/or

(2) isolating failed equipment and using only the remainder are more feasible in a

modular arithmetic computer than in any other known machine organization.

6-Z3



7. IMPLEMENTATION STUDIES

7.1 MODULAR ADDER AND MULTIPLIER MECHANIZATIONS

Early in the study, the task was undertaken of investigating and evaluating methods

for implementing modular adders and multipliers with core matrices and conventional

logic gates. The results of these first investigations indicated that while ferrite

core matrices were conceptually simple for mechanizing adder, and multipliers,

this conceptual simplicity did not take account of hardware considerations. It was

found that:

a. A significant amount of hardware is required for decoding binary coded

residues modulo m to a (one-of-m wires is hot) code for input to the core matrix,

and separate decoding is required for both operands.

b. A logic network is required for encoding the (one-of-m wires is hot) result

to a binary coded residue for storing in memory.

c. For a modulus m, 2m core drivers and m sense amplifiers are required

for a mod m adder, and similarly for a mod m multiplier. However, if the same

matrix is used for both adder and multiplier, drivers and sense amplifiers can be

shared.

d. The speed of a core matrix adder or multiplier is limited to approximately

the cycle time of a core memory made from the same cores. A reasonable upper

limit is a I-microsecond cycle time as compared to about i/i0 microsecond for

semiconductors.

The above disadvantages and limitations of core matrix mechanizations indicated

that logic gate mechanizations ;hould be fully and carefully explored, particularly

in view of the fundamental speed limitation of cores. Thus, while remaining cogni-

zant of the relation of new modular arithmetic algorithms and general implementation

studies to core mechanizations, primary emphasis from the time of these first re-

sultj to the present has been placed on logic gate mechanization and related minimi-

zation techniques.

The approaches to logic gate implementation which have been developed, the values

and limitations of each, and promising areas for further work are contained in the

following paragraphs.

7-1



7. 1. 1 Direct Implementation

A first approach to the inrplementation of modular adders and muitipiiers with

logic gates is the straightforward one. For example, to mechanize an adder for

modulus m, the summands are assumed available in binary code, truth tables are

written to obtain the Boolean functions representing the modular sum, and any of the

standard function minimization procedures are applied to reduce the sum functions

to minimal form. The same technique is applicable to modular multipliers. This

approach has been investigated rather extensively at Westinghouse and elsewhere.

It has been determined here that, using this approach, a mod 31 adder may well re-,

quire several hundred logic gates. The results which indicate this unfortunate

circumstance are given below.

One of the five Boolean functions for the sum mod 31 (specifically that function

for the 3rd bit position) was minimized using a SHARE minimization program,

PK MIN 4. This function is a 10-variable function containing 505 minterms. After

1 hour of machine time on an IBM 7090, the function had not been reduced to its

minimum sum; it had been reduced to a sum of 123 products. Two other programs,

PK MIN Z and LL BAM were tried for equal lengths of time with similar results.

If this single function is representative of a practical minimum form for the sum

functions modulo 31, then a modulo 31 adder would require something in excess of

600 logic gates for mechanization if two-level logic is used.

The primary reason for the great complexity of the modulo 31 adder is that the

five sum functions modulo 31 are each functions of ten variables. The sum functions

modulo 32 would also seem to be functions of ten variables. However, it has been

shown in reference I that a modulo 32 adder can be mechanized for b8 AND-OR and

10 invert gates. The primary reason for this relative simplicity is that instead of

five functions each of ten Boolean variables, we have one function of ten, one of

eight, one of six, one of four, and finally one of two Boolean variables. In general,

if modulus m is an integer power of 2 (and if residues are coded in least nonnegative

value residue, LNVR, form), then the Boolean function for bit S. of the sum will be
1

a function of only the summand input variables A. and B. where j = 0, 1, 2. i.

The net result for integer -power-of-2 moduli, zn, is that instead of n Boolean sum

functions of 2n variables, we have one function S of Zn variables, one function

Sn. 2 of Zn-2 variables, and so on, to one function S of Z variables. The analogous

result holds for LNVR coded, integer-power-of-2 modulus multipliers. Hence,

the mechanization of adders and multipliers for integer-power-of-Z moduli is notably

7-2



simplified. This property can oe directly utilized foi only one modulus; i. e., since

moduli should be pairwise prime, at most one may be even. If least absolute value

residue (LAVR) rather tnan LNVR binary coding is used, the above results no longer

hold in general. However, mechanizations for LAVR integer-power-of-2 moduli

are notably simpler than for prime morlili > 2 due to symmetries similar to those

of LNVR coding.

Present indications are, then. that the direct implementation approach yields

adequately economical mechanizations only for integer-power-of-2 moduli and for

relatively small (M < 7) moduli. It should be pointed out that the computer minimi-

zation programs produced reduced functions in 1 minute that were very nearly, and

in some cases, exactly the same as the reduced functions obtained 1 hour later.

Thus, the function finally produced was a near-minimal sum of products and clearly

a practical minimal sum for the given programs. Two other possibilities for obtain-

ing less costly mechanizations are (1) sharing the common parts of the various func-

tions, essentially the multiple output approach, and (2) generating more highly

factored functions; e. g., products of sums of products. The first of these approaches

was investigated and found to give relatively small reductions in hardware. The

second approach might be of significant value if means were available for obtaining

these more highly factored functions. However, the general problem of Obtai-ing

minimizations oi this form is essentially an unsolved one, although some success

has been reported recently in reference 2.

7. 1. 2 Modulus Substitution

The second approach to implementation, modulus substitution, is derived from

the observation that modulo k addition can be performed on a modulo m adder, m > k,

provided means are available for interpreting the result modulo k when "overflow"

occurs; i.e., when the absolute value of the sum exceeds Ik-11for LAVR coding and

(k - 1) for LNVR coding. Similar remarks hold for multiplication. In figure 7-1 the

overflow states of mod 5 addition appear in the outlined triangles. It can be seen

that there are 10 overflow states mod 5 for LNVR coding and six overflow states mod

5 for LAVR coding. The number of overflow states is obviously independent of the

"parent" modulus, in this case, eight. It is seen that, in general, for modulus k

(k odd),

7-3



Modulus 5 LNVR Modulus 8 LNVR

0 1 2 3 4 10 1 2 3 4 5 6 7x x

0 1 2 3 A] 0 1 2 3 4 5 6 7

1 1z 3 4/ o0 1 1 2 3 4 /51 6 7 0/ I/
2 2 3 4/0 1 2 2 3 4/ 5/ I/5 6: 70 1

3 3 4/0 1 z 3 3 4/-5 6 7 I 0 1 2

4L5 5 6 7 1 2 3

5 56

6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

LNVR Overflow States Mod 5 LNVR Overflow States Mod 5

Modulus 5 LAVR Modulus 8 LAVR

x _,0 1 2 -2 -1 0 1 2 3 4 -3 -2 -1

0 0 1 2 ,4 -2 -1 0 0 1 2 3 4 -3 -2 -1
A

1 1 2 -2 -1 0 1 1 2,/31 4 -3 -2 -1 0I / I

2 2-2 -1 0 1 2 2 /3 41-3 -2 -1 0 1

-2 -2 -1 0 1 2/ 3 4 -3 -2 0 1 2

1 -i 0 1 2 /"-2 4 4t-3 -2 -1 0 1 2 3

-3 -3-2-1 0 1 2 3 4

-2 1? -3

-1 -1 0 1 2 3z

LAVR Overflow States Mod 5 LAVR Overflow States Mod 5

Figure 7-1. LNVR and LAVR Addition Tables Modulo 5 and 8 - Add X + Y

7-4



k-I

L = LNVR overflow states = x =k(k 1);
n 2

X= I

k-l

L LAVR overflow states 2 Z = k 4)(k 1).a X

x= I

As k becomes large, L - 2L a and another advantage of LAVR coding becomenn a

apparent.

The most obvious utilization of the above approach is for allowing serial-by-

modulus operation; i. e., by constructing only a parent modular adder and modular

multiplier and operating on sufficient smaller moduli, one per machine cycle, to

yield the required machine range. For a system with n moduli, an addition or a

multiplication would then require n machine cycles. Any convenient combination of

fully parallel and serial-by-modulus operation can of course be used. An example of

how this technique can be applied to perform mod 5 addition on a mod 8 adder is

shown in figure 7-2. The procedure is essentially a two-step one; i.e., perform the

addition mod 8, and interpret the sum mod 5. Consequently, a two-phase clock is

required, the addition proceeding as follows:

a. Clock Phase Une: Input mod 5 summands A and B to mod 8 adder. Sum

mod 8 of residues mod 5 is formed and appears in sum register.

b. Clock Phase Two: Interpret the mod 8 result as the sum mod 5. The surm

register is reset to the correct sum mod 5, when the sum mod 8 is not already the

sum mod 5.

It is seen that 13 logic elements in addition to the mod 8 adder are required to

perform the mod 5 addition. For 10 and 18 logic elements, we can perform mod 3

and mod 7 addition, respectively, on a mod 8 adder. This gives 4 total requirement

for mod 3, 5. 7, 8 addition of no more than 80 logic elements. Direct implementa-

tion requires about 115 elements for the same four moduli.

A less obvious application of modulus substitution is to combine it with the desir-

able properties of integer-power-of-2 moduli to obtain adders for moduli of interest.

That is, we can directly impiement an integer-power-of-2 modular adder and suit-

ably modify it to add mod k for less equipment than that required to implement the

mod k adder directly. For example, a mod 13 adder requires about 150 logic gates

for direct mechanization and about 102 logic gates for mechanization with a mod 16

adder plus correction logic.

7-5



MOD 5 SUMMANDS A AND 8/\

STRS N RRS RS S R
" 2 01 01 0o

CLOCK PULSE h 4PHASE ISMOS

o ro d 5 AND:

ADDEROR

I INVERT:

CLOCK ft
PULSEIT II II
PHASE 2 

C

TO INPUTS OF SUM REGISTER

Figure 7-2? Mod 8 for Mod 5 Addition

An appreciation for the utilitv of the modulus substitution method for mechanizing

modular adders can be obtained from table 7-1. The tabulation is for LAVR mech-

anizations. For the parallel adder. the adders for moduli 32, 7, 5, and 3 are mech-

anized directly; those for moduli 11 and 13 are derived from mod 16 adders using

modulus substitution. (It should be pointed out that the mod 32 and mod 16 adders

are LNVR adders with LAVR inputs logically interpreted as LNVR inputs and vice-

versa for the outputs. Thus, these mechanizations can probably be significantly

reauced.) The serial-by-modulus adder is derived from a mod 3Z adder mechanized

directly and used through modulus substitution to add for the moduli 13, 11, 7, 5,

and 3, one modulus per clock time. The serial-parallel adder uses a mod 32 direct

7-6



TABLE 7-1

DIRECT IMPLEMENTATION AND MODULUS
SUBSTITUTION LAVR ADDITION

Modulus Adder Gates

Parallel Adder
Add time = 1 clock time

32 130

13 102

11 100

7 40

5 26

3 10

19

vrM. 21 Total Gates = 408

Serial by Modulus Adder
Add time = 6 clock times

32 130

13 20

11 18

7 12

5 7

3 4

Ii M. 2 I9 Total Gates = 191
1

Modulus Adder Gates Modulus Adder Gates

Serial-Parallel Adder
Add time = 3 clock times

32 130 7 40

13 20 5 13

11 18 3 10

7M. % 219 Total Gates = 231
1

7-7



adder for moduli 32, 13, and 11, and a mod 7 direct adder for moduli 7, 5, and 3.

For purposes of comparison with the parallel adder, direct implementation of adders

for all these moduli would require about 500 logic gates.

Due to the multiple-overflow problem encountered in modular multiplication,

modulus substitution is of limited utility for modular multipliers. A more suitabl-

approach for multipliers is the method to be presented next.

7. 1. 3 Sign-Magnitude Mechanization

The third approach to modular implementation takes advantage of the symmetry

obtained through the use of LAVR coding. Again modulus 5 will be used for an ex-

ample. As may be seen from the LAVR multiplication table mod 5 in figure 7-3, it

is only necessary to mechanize the upper left quadrant of the nonzero portion of the

table, giving the signed magnitude of the product. Then, if the signs of the inputs

are alike, the signeo magnitude is the correct product; otherwise, the sign of the

signed magnitude must be complemented. The complete mechanization of a mod 5

multiplier using this approach is shown in figure 7-4. As with the logical substitu-

tion method, a two-phase clock is used. The additional logic required to detect aid

if necessary complement the sign bit of the product consists of 4 AND, 1 OR, I IN-

VERT, and 1 set-reset FLIP-FLOP logic elements; total requirement is 16 logic

elements. The total requirement for a mod 5 multiplier using direct implementa-

tion is 18 logic elements. Thus, the advantage of sign-magnitude mechanization is

rather small for the example multiplier. However, because the sign correction

logic is identical for all odd moduli, the sign-magnitude method requires no more

than about one-half the amount of logic used in direct implementation of multipliers

for reasonably large moduli. Precise minimizations have been derived for the

sign-magnitude mechanization of multipliers for moduli 7, 11, 13, and 15. The

total numbers are 22, 41, 52, and 44 logic elementb, respectively. While no precise

figures are available for directly implemented multipliers for all of these moduli,

our experience indicates that the direct approach would require approximately twice

tne logic required by the sign-magnitude method.

The sign-magnitude method of implementation can be applied to the mechanization

of modular adders, but because the symn~eries of an addition table (see figure 7-1)

are not as extensive as those of a multiplication table, the economies derived are

not as great.

7-8



Xl 0 1 2 -Z .

0 o 0* 0 1 0 0

1 0 I 1 2 _Z -

2 0

2- 0 - 11 -

-1 0 -1 -2 2 1

Figure 7-3. LAYVR Multiplication Table Mod 5 -Multiply X- Y

CLOCK 4

PULSESE

Figure 7-.Sg-aItdeMlile o

SvV9O7-9



7. 1.4 Range Extension Technique

Using a mod m adder and a mod n adder, mod mn addition may be performed,

provided m and n are relatively prime. The same holds for multiplication. At

first, this seems of no value, since mn is relatively prime to neither m nor n.

However, this approach can be combined with the modulus substitution method to

obtain new moduli which are relatively prime to both m and n, thereby extending the

range of a modular system.

As an example of this technique, consider that there are available mod 2 and mod

5 adders. Using a truth table-function minimization approach, residues mod 2 and

5 can be converted to a residue mod 10 for 7 AND, 2 OR, and 3 INVERT gates. A

mod 10 addition can then be performed by adding residues mod 2 and mod 5 of sum-

mands which are each residues mod 10. This implies that the residues mod 10 must

be converted to residues mod 2 and mod 5, either in the beginning and stored as

such, or when an addition is performed. Using the modulus substitution method, we

can use the mod 10 add capability for adding mod 3 and mod 7. The total logic re-

quired for this modular adder aggregate (moduli 2, 3, 5, 7) is 48 logic elements.

However, including input conversion time, a complete addition requires 3 machine

cycles for the addition plus 20 cycles for the determination by conventional means

of the residues mod 2, 5 of the residues mod 3 and 7.

To reduce the total add or multiply time using the above approach, the feasibility

of using logic networks for directly converting residues from one modulus to another

was investigated. Assume now the availability of mod 3 and mod 4 adders and multi-

pliers. We wish to add and multiply for moduli 3, 4, 5, 7, and 11, using the range

extension technique to obtain capabilities for the last three moduli. Also, we will

use logic networks to provide instantaneous conversion of residues from modulus to

modulus as required. Total add or multiply time will be 4 machine cycles. The

total logic (direct implementation, LAVR) for the mod 3 and mod 4 adders and multi-

pliers is 22 AND and 6 OR gates. Conversion of mod 3 and mod 4 to mod 12 re-

quires 11 AND, 4 OR, and 4 INVERT gates. (Modulus substitution (for moduli 5, 7

and 11) on first look appears to be simplified over that of paragraph 7. 1.3, but such

is not the case. For example, to perform mod 11 multiplication on the mod 3, 4 -

mod 12 hardware, it is necessary to provide the capability for detecting and cor-

recting for the multiple overflow which can occur in multiplication. Preliminary

investigations have not yielded economical mechanizations for correcting multiple

overflow, but this is not to say such mechanizations cannot be developed.)

7-10



The logic required for input conversion of mods 5, 7, and 11 to residues mod 3

and 4 is 21 AND, 10 OR, and 10 INVERT gates. Now, if the residue mod 5 (or 7,

or 11) is stored as a residue mod 5 (or 7, or 11) then an addition or a multiplication

will often require that two determinations of the residues mod 3 and 4 of the residue

mod 5 (or 7, or 11) be made. If the above logic network (21 AND, 10 OR, 10 INVERT

GATES) performs ths conversion and a total add or multiply time of 4 machine cycles

is required, two such logic networks will be needed. Figure 7-5 shows a likely con-

figuration for the adder-multiplier just discussed.

OPERAND REGISTER

CADD ERS CONVRT CNVER

MOD M3,4 MOD3,4

MOOII OD? MOO MO 12 MOD 12 MOO
COVET ONER CNVRTCONVDER2T CONVERT CONVERT
MO 34 MO 34 MO 34MODII MOD 7MO

TO ADDER OR TO ACCUMULATOR OR
MULTIPLIER INPUTS TO MEMORY

Figure 7-5. Mod 3, 4 and 5, 7, 11 Adder-Multiplier

The hardware requirement for the above adder-multiplier excluding mod substitu-

tion logic is 129 logic elements. If the residues mod 5, 7, and 11 are stored as

residues mod 3 and mod 4 of residues mod 5, 7, and 11, this requirement is cut by

41 logic elements, at the expense of two bits added to the modular word length.

7-11



The factor which makes the above technique significant is that much of the logic'

is used for both addition and multiplication. If logic techniques to economically

substitute one modulus for another in multiplication can be developed, range ex-

tension will provide more economical mechanizations than any now available, par-

ticularly for large moduli (> 32).

A variation on the range extension technique is to utilize pairs of moduli as

pseudosingle moduli for reducing the time required for sign determination. For ex-

ample, given the moduli 2, 3, 5, 7, 11, and 13, the arithmetic unit can be designed

to appear to be operating with moduli 26, 33, and 35 during mixed radix conversion.

Sign determination time is reduced from 10 to 4 machine cycles, or from 5 to 2

cycles depending on how mixed-radix conversion is obtained.

7. 1. 5 Programmed Arithmetic

A method will be presented in which existing hardware is used to extend the

machine range through programming subroutines; i. e., a "microprogram" is used

to program a mod m unit, m > k, to do mod k arithmetic with no additional circuitry.

In the following, 0 and (will be used to designate mod k operations. Least abso-

lute value representation is assumed.

The case k = 2, m = 3 is quite simple.

xQ y =xy

x y=x+y+xy=x+y- 2xy

When m = 5,

xQy = xy
k= 2

x Qy = x + y - 2xy

xGQ y = xy
k= 3

x 0y = x + y + xy (x + y)

When m = 7,

x Qy = xy
k= 2

x QDy = x + y - 2xy

k=3 xQy = xy

xDy =x +y+ Zxy(x + y)

7-12



xQy xy t Zxy (X - 1) (y - 1) (xy - 1)

x ( xc =y+x+y+3xy(x+y) (x+y- )(x+y- ) x+2)+l

xQY = xy + zxy (x - 1) (y- - 1)

k= X y x + y + 2 (x + y) [cx + y)Z +31 (x + y) - 1] (3 ,)

For general in,

xQy = xy
k= 2 xG = x + y - 2xy

x y = xy
K= 3

x (Qy = x + y + axy (x + y)

where

2a = -3 mod m.

Apparently multiplication is simpler than addition, but for k > 3the programs

appear to be too long. On the other hand, no additional hardware (other than storage)

is required for these programs. A single mod m unit can be used to increase the

machine range by a factr- of (2) • (3) = 6 at the cost of tripling MULTIPLY time and

multiplying ADD time by 10 if 2 and 3 were not used as original rnoduli. On the

other hand, if mod m 1 and m 2 units are used to compute mods 2 and 3 simultaneously.

then this increase in machine range is available at a cost of doubling MULTIPLY

time -and multiplying ADD time by a factor of 5. (If m = 5 is used for mod 3 arithme-

tic, this latter factor is reduced to 4.)

7. Z MOLECULAR LOGIC ELEMENTS

A study has been made of molecular logic elements for the purpose of determining

availability, applicability, and reliability of such elements as might be used in the

mechanization of a modular computer. Several types of currently available single-

element logic gates have been investigated and each has been found to be applicable

to some degree. Reliability data are given here for one type, Fairchild Micrologic

elements. Life-test data of Micrologic elements validate a failure rate of better

than 0.01 percent per 1000 hours, to a 60 percent confidence limit. This reliability

figure is sufficiently high to yield for a medium size computer employing 2000 such

elements, for example, the following approximate reliability.

7-13



Mean time between failures:

1 1000 hours
(parts) (failure rates) - 2(10 3 ) 10 - 4

= 5000 hours.

Operating at 90 percent reliability:

R: Reliability

X: System failure rate = part failure rates

t: time period involved

R =

-LnO 090 = -2(10-1! t
1000 hours

t 500 hours.

The above reliability figures are order of magnitude estimates and are given for

general information only. The failure rate assumed for the Micrologic elements is

higher than the actual one and was obtained by assuming one failure had occurred at

the end of the life test period, whereas actually none had occurred.

Other. molecular logic elements which were investigated did not have available

life test data, but this data in some cases will be available soon. Since two of the

manufacturers concerned, Westinghouse and Texas Instruments, are presently

developing molecular elements for the Minuteman program, the adequate reliability

of such elements seems turther assured.

7. 3 SUMMARY AND RECOMMENDATIONS

The methods which have been presented for mechanizing modular adders and

multipliers demonstrate that modular arithmetic computers can be economically

implemented with logic gates. Those methods also indicate that speed and complexity

may be exchanged in an almost continuous manner, from a programmed serial-by-

modulus machine to a fully parallel machine of extreme speed. Finally, these

studies of implementation methoub nave given major reductions in the hardware re-

quired for mechanizations, and it is felt that further reductions will result from

continued studies.

In summary of our implementation studies, then, we will present first a review

of the best approaches now available and second a discussion of directions for further

work.

7-14



7. 3. 1 Present Status of Implementation Techniques

If a modular adder for modulus m is to be mechanized, we have at our disposa,

two "best" techniques. If m is less than 8 or any integer power of Z, then the mod

m adder can be mechanized most economically through direct implementation as

discussed in paragraph 7. 1. 2. If m does not meet the above conditions, then the

modulus substitution me-hod of paragraphs 7. 1. 3 and 7. 1.5 is most economical.

If a modular multipl. - is to be mechanized, the sign-magnitude technique of

paragraph 7. 1. 4 requires minimal hardware. It can be noted that judicious choice of

moduli, for example, modulus 31, allows the signed magnitude mechanization to be

very nearly the same as a LNVR mechanization for modulus 16 which, of course, is

notably simple.

7. ..'. 2 Directions for Further Stud,

7. 3. 2. 1 Minimization of Boolean Functions

The use of existing computer programs to obtain minimizations of Boolean func-

tions has proven unsatisfactory in modular arithmetic implementation studies.

While this fact is in part due to the large number of variables present, more signif-

icant is the observation that the class of Boolean functions of n variables generated

by modular adders and multipliers is most likely a very small subset of the complete

set of 22 functions of n variables. Since the computer programs used were all

written for the complete set of functions, it is reasonable to assume that the modu-

lar function minimizations obtained suffered from the severely overgeneral nature

of the programs. It is recommended that a study be made, first to determine the sub-

class of functons to which modular functions belong, and second, to exploit the

special p-roperties of this subclass, if possible, to obtain more economical mechani-

zations through both conventional. minimization techniques and new computer pro-

grams.

7. 3. 2. 2 Multiphase and Multicycle Operations

The method of sign-magnitude mechanization gives a major hardware reduction

by trading a second phase of a clock cycle for the hardware it replaces. The serial-

by-modulus approach made possible by modulus substitution also trades time for

hardware. Further methods of this type should be investigated. For example, a

multiple-sign coding offers some promise of further hardware reductions for modu-

lar multipliers.

7-15



7. 3. 2. 3 Range Extension and The Sharing of Logic Between Adders and Multipliers

The technique of range extension (i.e., utilizing pairs of small moduli to obtain

large moduli and thereby extending the range) has most interesting properties.

Consider, for example, the moduli 7 and 8 extended to modulus 55. We then have

mod 7, 8 adders and multipliers, a mod 7, 8 to mod 56 converter, a mod 56 to mod

55 correcting converter (for add and multiply), and a mod 55 to mod 7, 8 converter.

If a mod 56 adder and multiplier had been mechanized directly, a total of 1Z, 1Z-

variable Boolean functions would have been implemented. With the range extension

technique, we mechanized instead 1Z, 6-variable functions for the mod 7, 8 adders

and multipliers, 10, 6-variable functions for the 7, 8 - 56 and 55 - 7, 8 converters,

plus an as yet unspecified logic network for the mod 56 to mod 55 correcting con-

verter.

The network to correct the mod 56 sum to the mod 55 sum is simply a modulus

substitution network as described in paragraph 7. 1. 3. The network to correct the

mod 56 product to the mod 55 product, however, is not so simple. Basically, this

network must have the capability to determine if the product of the mod 55 inputs has

overflowed mod 56 and if so how much. The mod 55 inputs must be examined for

this information. An economical method for accomplishing this detection and cor-

rection should be developed.

If the correcting converter just described is available, then range extension be-

comes an exceedingly powerful technique. For example, all hardware used in con-

verting (7, 8 - 56, 56 - 55, and 55 -7, 8) is used for both adding and multi-

plying. Further, it then becomes very easy for the progtam to specify the range of

the machine. That is, a correcting converter should basically be capable of cor-

recting mod 56 to other moduli, say 53, 51, and 47. Thus, single-precision computa-

tion can proceed very rapidly, while very high precision is available at lower speed.

7. 3. 2. 4 Isomorphic Relations

Considering the operation of addition alone, the residues mod m form a cyclic

group. The direct sum of 2 such groups for'rnoduli n I and m 2 ; that is, the set of

pairs (x, x 2 ) with addition performed mod m for the first component and mod m 2

for the second component, is a cyclic group of order mI m isomorphic

to the group of residues mod mI1 m under the operation of addition. That is, the

set of pairs simply acts as a code for the residues mod mi n2 and conversely, so

that if

7-16



X-- (X1 , x2 )

Y - ( l' Y2)

then

XY- (xI + Y1 x2 + Y2 ) "

In fact, this is the basic idea of mod arithmetic.

It is well known that a cyclic group contains cyclic subgroups of all orders which

divide the order of the group.

On the other hand, the set of residues mod p excluding 0 forms a cyclic group of

order p - 1 under the operation of multiplication mod p. Now any two cyclic groups

of the same order are isomorphic. Hence, if p is a prime such that p - 1 divides

m1 M2, then the multiplicative group mod p is a subgroup of the additive group mod

m I m 2 and hence of the direct sum of the additive groups mod m I and m 2 . For ex-

ample, with ml = 8, m 2 = 15, p = 41, the mapping shown below is an isomorphism.

Mod 41 Residue Mod (8, 15) Code Mod 41 Residue Mod (8, 15) Code

1 (0, 0) 21 (2, 12)
z (6, 3) 22 (7, 12)
3 (5, 0) 23 (4, 3)
4 (4, 6) Z4 (7, 9)
5 (2, 6) 25 (4, 12)
6 (3, 3) 26 (3, 6)
7 (5, 12) Z7 (7, 0)
8 (2, 9) 28 (1, 3)
9 (2, 0) 29 (5, 6)

10 (0, 9) 30 (5, 9)
11 (1, 9) 31 (4, 9)
12 (1, 6) 32 (6, o)
13 (5, 3) 33 (6, 9)
14 (3, 0) 34 (1, 12)
15 (7, 6) 35 (7, 3)
16 (0, 12) 36 (6, 6)
17 (3, 9) 37 (0, 6)
18 (0, 3) 38 (1, 0)
19 (3, 12) 39 (2, 3)
20 (6, 12) 40 (4, 0)

Ii for example, one wishes to multiply (18) (37) mod 41, one adds their mod (8, 15)

counterparts

(0, 3) + (0, 6) = (0, 9) mod (8, 15)

and finds that 10 is the counterpart of (0, 9). (Actually, (18) (37) = 16(41) + 10.)

7-17



Thus, except for multiplication bi 0, which is trivial, the entire multiplication

table mod 41 is contained in the mod (8, 15) addition tables. In fact, subgroups of

the (8, 15) additive group are isomorphic to 'he multiplicative groups mod 3, 5, 7,

11, 13, 31, 41, and 61, at least.

The significance of this is that mod 41 multiplication is a priori considered to be

difficult to implement, while mod 8 and 15 adders are simple to mechanize, and yet

the latter pair of addition tables contains the mod 41 multiplication table, as well as

others. It is therefore recommended that mechanization studies attempt to capitalize

on this algebraic structure. Note that such studies are purely modular in nature

since such structure is lacking in conventional (i. e. , nonmodular) coding. Two

directions of effort are indicated;

a. The use of the isomorphism directly to allow the use of the adders or parts

thereof together with coders and decoders or table look-up, to perform multiplica-

tion.

b. The use of the isomorphic relations in minimizing the Boolean functions

for the multiplication tables with specific implementation of the multiplication func-

tion.

7. 3. 2. 5 Psuedo-Single Moduli

The technique of using pairs of moduli as psuedo-single moduli during mixed

radix conversion was briefly discussed in paragraph 7. 1.5. The example given there

used moduli 2, 3, 5, 7, 11, and 13 which were paired as (2) . (13) = 26, (3) • (1I)

= 33, and (5) • (7) = 35. This example will be further considered here. Let the resi-

dues mod 26 be stored as residues mod 2 and mod 13 of residues mod 26, and, simi-

larly, for mod 33 as mod 3, 11 and mod 35 as mod 5, 7. In the mixed-radix conver-

sion, the dkj s must be available in special form; e.g., if modulus 26 is to be elimi-

nated first, we must perform the operations.

(X 3 3 - X 2 6 ) " d2 6, 33 and (X 3 5 - X 2 6 ) . d 2 6 , 35"

Since the operation (X 3 3 - X2 6 ) . d2 6 3 for example, is actually performed

modulo (3, 11), d2 6 33 must be used in the form of d2 6, 33 (mod 3) and d2 6 , 33

(mod 11). Also, since residues mod 2, 13 will have to be converted to residues

mod 3 and mod 11., extra hardware will be required for this conversion. In addition

to the mod 2, 3, 5, 7, 11, and 13 adders and multipliers, the following hardware

must be provided:

7-18



one mod 2, 13 to mod 3, 11 converter

one mod 2, 13 to mod 5, 7 converter

one mod 3, 11 to mod 5, 7 converter

The mechanization of these converters is straightforward and requires that a total of

12, 5-variable and 6, 6-variable functions be mechanized.

Several questions remain unanswered concerning the above technique:

a. What is the optimum grouping of the pairs of moduli for minimal hardware

realization of the technique?

b. Can more than two moduli be grouped economically?

c. Is this technique, in general, more economical for reducing mixed radix

conversion time than wire-twisting, or than employing a smaller number of single

large moduli?

Obviously, the above questions should be investigated, since they are directly

concerned with reducing the operation time of such a fundamental modular operation.

The high degree of interdependence between all of the above-proposed investiga-

tie ns and particularly between 7. 3. 2. 1 and 7. 3. 2. 4 will be recognized.

7-19



8. REFERENCES

1. Garner, H. L., et al., "Residue Number Systems for Computers," ASD
Technical Report 61-483, University of Michigan, October 1961.

2. Driese, Edward C., George E. Glen, and Ralph E. Young, Jr., "Computer
Applications of Residue Class Notations, " ASD Technical Report 61-189,
September 1961.

3. Shapiro, H. S., "Some Remarks on Modular Arithmetic and Parallel Compu-
tation, " Mathematics of Computation, 16, (April 1962), 218-222.

4. Trench, W. F., "On Periodicities of Certain Sequences of Residues,"
American Mathematical Monthly, LXVII, 7, (1960).

5. Frazer, R. A., W. J. Duncan, and A. R. Collar, "Elementary Matrices,"
Cambridge, (1950), 37-39,

6. Fadeeva, V. N., "Computational Methods of Linear Algebra, " Dover Publi-
cations, Inc., New York, (1959), 167.

7. Vinogradov, I. M., "Elements of Number Theory, " Dover Publications, Inc.,
1954.

8. Cheney, Philip W., "A Digital Correlator Based on the Residue Number
System, " IRE Trans. on Electronic Computers, EC-10, 1, (March 1961).

9. Lawler, Eugene L., "Minimal Boolean Expressions with More than Two
Levels of Sums and Products, " Switching Circuit Theory and Logical Design,
Proceedings of the Third Annual Symposium, Chicago, Ill., October 7-11,
1962, Published by the AIEE, (1962), 49-59.

10. Pei, M. L., "A Test Matrix for Inversion Procedures, " Communications of
the Association for Computing Machinery, 5, 10, (1962).

11. "Modular Arithmetic Computing Techniques," Interim Engineering Report
Number 2, Westinghouse Electric Corporation, 25 August 1962.

8-1



APPENDIX

PROOF OF CONVERGENCE; OF SQUARE-ROOT PROCEDURE
(See Paragraph 4. 1.6)

The proof of convergence is by induction and is divided into two cases: In Case I,
p i od, x Z~- 1)/a andk.=ZZi( "p + 3)/a

pis odd, x 1= ; while in Case I, p is even,

p/2 an z. - (p + z)/a.x 2 , and k 2 i . The basic idea of the proof is to show that z.

decreases as i increases. To show this, it is necessary to prove that all x. lie

between certain bounds.

For instance, in Case I, we must show that Zp" 1)/2 _X1 < x< 2 (p + We

know that x I is less than a, sox z > x 1 and, so long as x i < a, x i + 1 > x.. Hence,

the only way for x i + 1 to be less than x 1 is that x. become greater than a for some i.

What we intend to show is that, when such a "reversal of direction" occurs in the

sequence, X, x 2 , .... , then z. is decreased sufficiently to guarantee that all

succeeding x , will be greater than x 1 . That all x. are less than Z( p + 2)/? is shown

directly. We now proceed with the proof of Case I.

Case I

(p-1)/a (p + 1)/2Our induction hypothesis is that z. < z, 1 . p - I and 2 p  l < x. < 2

We have already shown in paragraph 4. 1. 6 that these conditions are satisfied for

i = I (assuming that z0 = p - 1). We now assume they are satisfied for an arbitrary

i > I and prove this implies they are satisfied for i + 1.

First, we obtain bounds on (a - x. I. From the definition of z. and the induction

hypothesis, we have 2 zi> ja " xi 1= (a + xi) a - x, I > (2 • ( p , -  /) a - x ii

= Z(p + -)/Z 
a - xi I, and 2zi I < ja . xi a 

= (a + xi) Ia x xiI < (2 p / 2 + 2 ( p + 1)/2) I a x x i < Z( p + 3)/Z a x Hence,

2zi - (p + 5)/2 < la - x -i < ?,i" (p + 1)/2

Next, we show that x.+I < ( p + 0)/2 I x > a, then

= - z "(p+3)/2 < x 2 (p+ 1)/a by the induction hypothesis. On the other

A-1



hand, if x.<a< 2P / z, then x x + Zzi - (p + 3)/- < 2p/Z + 2p - I - (p + 3)/21 - j+l

ap/Z (p - 5)/2 (p + 1)/a

Now, if (a - xi) and (a - x i + ) have opposite signs - that is, if the sequence

"reverses direction" at x. -, then it follows that zzi - (p + 3)/Z >l a - x.1 and a- x I
1 1 +l

z - (p + 3)/Z a xI<azz (p + 3)/? z -(p + 5)/Z = z - (p + 5)/Z
1

Therefore, I a 2 - x + = (a +x i)I a - x. 1

+1+ ( 5 (z -1< (2 p/ + 2 (p+l)/Z) 2 zi -(p-+ 5)Ia < 2 2 i - (p + 5)I =zi - and

z < z. - .
Morever if a-x)ad(
Moreover, if (a x di and (a - x i + I ) have the same signs, then Ia -x i + 11

a x . I - z i " ( p + 3)/2 < Zzi - (p + 1)/z - 2zi - (p + 3)/2 2 z - (p + 3)/2 and

laa - x1l" = (a + x i + 1 ) la - x i < (2 P/2 + 2( p + 1)/2) az. - (p + 3)/2

ap + 3)/.z - (p + 3)/?
(pi += zi. Hence, z. +< z., and if z = z., it follows

from the bounds on Ia - xl that the sequence reverses direction at x i + a; that is,

(a - x i + ) and (a - x i + 2 ) have opposite signs. Therefore, z < z+ 2 1.i1a i -a-

We have now shown that z. decreases as i increases, which implies that x.1 1

approaches a as i increases. It remains to be shown that x. > x = (p - 1)/ for

all i > 1. We know that x I < a, so if the sequence does not stop at x1, then x2 must

be greater than x 1* Obviously, then there is no danger of x. becoming less than x 1

unless the sequence reverses direction for some i. But when that happens, z.

decreases by at least 1 as we have shown above. Hence, if x. is the first element of

the sequence that is greater than a, then z. < z. - 1 which implies that1- 1- 1 ic mlista
x i + 1 > x Now if z = Zi + 1 = z, - 1, then x, + ?.> x , and another reversal of

direction occurs at xi + 2" And if either of z. or z. 1 + 1 is less than z I - I, then it

follows from the above arguments that all of the elements, x, + x +a are

strictly greater than x1 . Either way, we see that, because z. must decrease by at

least 1 for every two successive terms of the sequence, all x.'s are > x . This

com pletes the proof that z + I and x, + I satisfy the induction hypothesis; hence, by
the induction principle, all x.'s and z.'s satisfy the induction hypothesis for i > 1.

In Case II., the basic idea of the proof is the same as in Case I, but the situation

is complicated by the fact that the "bounds" in x. are reversed; that is, it is rela-
tively easy to show directly that x. > Zp " for all i > 1, but an almost circular"

1A-

A-a



argument must be used to show that xi <x I = 2p/ Z . Hence, we first consider

the situations in which x. > a, since this assures us that x.+ is bounded (by xi).1+

Since x, > a, we can get enough results about the behavior of the sequence xl, x?,

.. , in these situations to complete the proof for the remaining possible situations;

i. e., these in which x. < a. We now proceed with the proof.
1

Case II

Our induction hypothesis is that z< z i I < p - I and 2(p - 1)/ -< x i < 2p / ?,

which we have already shown to be true for i = 1. As in Case I, we show that if we

assume the hypnothesis is true for some arbitrary i, then it is also true for i + 1.
Z .

2

We first obtain bounds on a- xi . We haveZ '_> I a -x. = (a + xi a - xI

(P - 1)/Z + - 2)/2) (p/2).- a
> (2 )/ + z ) I a x > I a-/ (a - xi and < a - x I

(a +axi).a - xi I< (2 " z
p / I • a - x. i = 2 (p  I a - x. " Hence,

z. - (p + 4)/a z. - (p/Z)a 1 <Ia-x.l<a
1

Next, we consider the case where (a x xi) and (a -xi + 1) have the same sign. Let

Z. - (p + Z)/a
us assume only that xi + < x.. Then a-x. I =a - x.-

z* - (p/a) zi - (p + a)/a z. - (p + a)/a
< z - z = z , and from our assumptions it follows(p+ )/2
that (a +xi + )< a x + 1 < Z x. < + Hence, I a - . +

z (p+a)/a z.

S1 - a = Z . Therefore, in this

subcase, z. < z..

Now we consider an analogous situation for the case where (a - xi) and (a - x +

Z. - (p + a)/a
11have opposite signs; that is, we assume only that x . > a. Then a

I - x + - (p + a)/a (p + .)/z .- (p + 4)/z
>la -x land la -x. I =aZ - ia- x. <a 1

1 i+l 1
z, - (p + 4)/a

= a 1 . Also, (a +'xi +) < 2xi < 2 p + a)/Z from which we have

a - xi + 2 (a +xi + Ia+ I. azi (p +4)/a z I

Hence z < z.+ -1.

A-3



But since x must be greater than or equal to a, all succeeding xi, if any, must

be less than xI unless the sequence "reverses direction. " If this happens, z. de-

creases by at least 1, eo we can apply an argument similar to that used in Case I.

Suppose the sequence reverses direction from decreasing to increasing at x.; that is,~1
a > x. and a < x. 1I Then, zi < zi 1 -1, as we have shown above, and therefore

xi+ 1 < xi- 1  Also, if zi =zi + I = zi - 1 ,then xi + -< xi - 1; and if either z.

or z + Iare less than z. -1, then all succeeding elements of the sequence are <

x. Hence, the above arguments for the situation where x. > a are also valid for

the situation where xi < a, since xi, xi + I' Xi + Z .... are < x, 1 for the "point

of reversal" x., which is < 2p / 2 by the induction hypothesis. Hence, in general,1-

z+ I< z.* whenever (a - xi) and (a - x, + 1) have the same sign; and z, + 1 z,

whenever (a - xi) and (a - xi + I,) have opposite signs.

Now all that remains is to show that x > 2 (p - )/Z. To do this, we first show

that, if zI = p - 1 and xz > a, then z2 < p- l. For (a + x2 ) < Z x2 < 2 x = 2 p +

,(p - 4)/2 )Z ]Z Z

and I a - x2 2 = x a<Zp /2 _ 2 (p - l)/ < 2 (p - 8)/2; hence, Ia2 - x2

=(a +x 2 ) a- x 2  < •+ )/22 - 8)/Z= 2
p -3, from which we have z 2 < p- 2.

Therefore, for i > 2, z. < p - 2. Now if x < x, x i must be > a, which im-

plies that x > 2 (p - I)/2 Hence,

x =x -z i -(p+2)/Z >2 (p " l)/2 2 (p-6)/ Z >2 (p-2)/2

By the induction hypothesis and the results proven above, this completes the proof.

What we have proven in both ca:,*s above is that the sequence xi, x 2. . . .. . con-

verges to a with an increase in ac.,iracy of at least one binary bit per two terms of

the sequence. In actual practice, the convergence is considerably faster than this,

since the theoretical "worst cases," used in the above proofs, never occur.

A-4



44 o o

I- --

ok CM

'~~b M.~' a

N .2 a,'0 o

WO Or 2 z~

Ell
4 oo

00 > .d I

~~~~~~~~ o~ic, ~ I cic ~ c

< E < 8.~ ~ C Nfl 5

Ho 'm o

Ccc ~ ~ ~ . m >i~s~ D~ b~ C

1 ~ o o o. o

,i i , 4a i

k cici 2 ati 5k

A a~
5~ 4t<p oim S cN

t, baac N 0., ac i

ci m.O d2 S § ci_

4 U ? tS Ti m.

I oa

k4ic o z cu, o.

N o

